Let $$R=\mathbb{Z}[\sqrt{-13}]$$, let $$p$$ be a prime in $$\mathbb{N}$$, $$p\neq 2,13$$. Suppose that $$p$$ divides an integer of the form $$a^2+13b^2$$, with $$a,b$$ integers and coprime. Let $$P=(p,a+b\sqrt{-13})$$ be the ideal generated in $$R$$ by $$p$$ and $$a+b\sqrt{-13}$$ and let...