Angular Acceleration, 2 Pulleys on common axle

AI Thread Summary
The discussion focuses on calculating the angular acceleration of a system with two pulleys of different radii and attached masses. The user correctly applies the torque equations and checks their units, but arrives at an unexpected result of 50.9 rad/s², which seems incorrect. They express confusion over the calculation and the requirement for significant figures in their homework system. Other users suggest that the issue may lie in the calculations or assumptions made during the process. The user is seeking guidance on identifying potential errors in their approach.
Xlorep
Messages
2
Reaction score
0
Note: This is similar to 2 previous questions I've seen here (https://www.physicsforums.com/showthread.php?t=261193"), and while this is my first post, I've lurked/found this site to really be helpful in getting me to be able to figure out how to solve problems I have with my physics homework.

Homework Statement



Two pulley wheels, one of radius 0.3 m and the other of radius 0.82 m, are mounted rigidly on a common axle. The rotational intertia of the two pulleys, which are clamped together, is 3.3 kg·m². A mass of 44 kg mass is attached on the left and a mass of 37 kg mass on the right, as shown.

attachment.php?attachmentid=15717&d=1222991526.jpg


Find the angular acceleration of the system. Take the clockwise direction to be positive. The acceleration of gravity is 9.8 m/s². Answer in units of rad/s².

Homework Equations



ΣΤ = Iα

ΣΤ = Τ1 + Τ2

The Attempt at a Solution



So, the process I followed was this:

I found the torques for each mass & radius:

Τ1 = -(m1)g(R1)sin(90) --> (negative because going CCW)

Τ2 = (m2)g(R2)sin(90) --> (positive because going CW)

Therefore: ΣΤ = (m2)g(R2) - (m1)g(R1) = g(m2R2 - m1R1)

Which means: g(m2R2 - m1R1) = Iα

α = g(m2R2 - m1R1)/I

Checking the units, I should get rad/s²:

m/s²·(kg·m)/kg·m²

Which is: (m²·kg)/(s²·kg·m²)

Results in: rad/s²

So my units check out.

So, with the following variables (I'm hoping I got the left/right values correct):

  • g = 9.8 m/s²
  • m1 = 44 kg
  • R1 = 0.3 m
  • m2 = 37 kg
  • R2 = 0.82 m
  • I = 3.3 kg·m²

Plugging these in, I get:

α = [9.8]([37][0.82] - [44][0.3])/[3.3]

α = (9.8)(30.34 - 13.2)/3.3

α = (9.8)(17.14)/3.3

α = (167.972)/3.3

α = (167.972)/3.3

α = 50.90060606 rad/s²

Which, apparently, is wrong. So I'm at a loss. What did I do wrong? Or rather, what would be a good hint for me to figure out where I went wrong?

(and yes, I know it seems strange for an α > g... that doesn't seem to logically follow for me)
 
Last edited by a moderator:
Physics news on Phys.org
Welcome to PF.

Did you enter just 50.9?
 
LowlyPion said:
Welcome to PF.

Did you enter just 50.9?

No, but the homework system my teacher uses is very annoying in needing an incredible number of sig figs. So I always have to just leave everything my calculator prints out to have success.

Update: Yes. It didn't help. I'm apparently missing something in my calculations.
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top