Average speed of molecules in a Fermi gas

Silicon-Based
Messages
51
Reaction score
1
Homework Statement
Prove that the mean speed ##<u>## in a gas of ##N## spin-1/2 particles at ##T = 0## is ##<u> = \frac{3}{4}u_F##, where ##u_F## is the Fermi velocity
Relevant Equations
##f(\epsilon) = \frac{1}{e^{\beta(\epsilon-\mu)}-1}##
My first most obvious attempt was to use the relation ##<\epsilon> = \frac{3}{5}\epsilon_F## and the formula for kinetic energy, but this doesn't give the right answer and I'm frankly not sure why that's the case. My other idea was to use the Fermi statistic ##f(\epsilon)## which in this case should be ##f(\epsilon)=2## for all ##\epsilon \leq \epsilon_F##, and then integrate somehow to find the mean velocity, but it isn't obvious to me what to integrate as ##f(\epsilon)## isn't a simple probability distribution.
 
Physics news on Phys.org
Silicon-Based said:
My first most obvious attempt was to use the relation ##<\epsilon> = \frac{3}{5}\epsilon_F## and the formula for kinetic energy, but this doesn't give the right answer and I'm frankly not sure why that's the case.
It doesn't work because of the fact that velocity scales as ##\sqrt{\epsilon}##,
$$
\langle \sqrt{x} \rangle \neq \sqrt{\langle x \rangle}
$$

Silicon-Based said:
My other idea was to use the Fermi statistic ##f(\epsilon)## which in this case should be ##f(\epsilon)=2## for all ##\epsilon \leq \epsilon_F##, and then integrate somehow to find the mean velocity, but it isn't obvious to me what to integrate as ##f(\epsilon)## isn't a simple probability distribution.
Generally speaking, if you wanted to calculate ##\langle x \rangle## for a Fermi gas, what equation would you set up?
 
Silicon-Based said:
Problem Statement: Prove that the mean speed ##<u>## in a gas of ##N## spin-1/2 particles at ##T = 0## is ##<u> = \frac{3}{4}u_F##, where ##u_F## is the Fermi velocity
Relevant Equations: ##f(\epsilon) = \frac{1}{e^{\beta(\epsilon-\mu)}-1}##

f(ϵ)f(ϵ)f(\epsilon) isn't a simple probability distribution.

Are you sure about this? What happens to f at T=0?
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top