Ball sliding on 3d-inclined plane

AI Thread Summary
The discussion revolves around determining the time it takes for a solid ball to roll down an inclined plane without slipping. Two methods were used to solve the problem: one based on rotational dynamics and linear kinematics, and the other on conservation of energy. The first method yielded a time expression of t = √(14L/5g sinΘ), while the second produced t = √(10L/7g sin Θ). The discrepancy in results was resolved by recognizing that the acceleration should account for friction, leading to the conclusion that the first method's assumption of a = g sin Θ was incorrect. The problem was ultimately solved by correcting the acceleration used in the kinematic equations.
terryds
Messages
392
Reaction score
13

Homework Statement



http://www.sumoware.com/images/temp/xzdmdjtlksnfhiqc.png
A solid ball rolls perfectly with initial velocity v0 in horizontal axis ( y-axis ) on an inclined plane with elevation angle Θ as the picture above shown. This ball moves turning due to the gravitational acceleration till it has traveled distance L in x-axis when it's at the bottom of the plane.
Determine the time (t) the ball needs to get to the bottom of the plane ! (The ball doesn't slip while rolling)

Homework Equations


Rotational dynamics equation and linear kinematics equation
Or conservation of energy equation

The Attempt at a Solution



I have two methods to solve the problem. But, the answers are different.

Using rot. dynamics equation and linear kinematics.
I just consider the x-axis since it's what the question asks.
ΣFx = ma
mg sin Θ - f = ma (Note : f is friction force)
f = mg sin Θ - ma

Στ = I α
f R = I α
f R = I (a/R)
(mg sin Θ - ma) R = (2/5) m R^2 (a/R)
mg sin Θ - ma = (2/5) m a
g sin Θ - a = (2/5) a
(7/5) a = g sin Θ
a = (5/7) g sin Θ

Then, I use the kinematics equation
L = 0.5 a t^2
2L/a = t^2
14L/ (5g sin Θ) = t^2
t = √(14L/5g sinΘ)

But, using conservation of energy, I get different answer
m g sin Θ L = (1/2) m v^2 + (1/2) I ω^2
m g sin Θ L = (1/2) m v^2 + (1/2) (2/5 m R^2) (v^2 / R^2)
g sin Θ L = (1/2) v^2 + (1/5) m v^2
g sin Θ L = (7/10) v^2
v = √(10 g sin Θ L / 7 )

Then, I use the kinematics
vt = vox + a t
√(10 g sin Θ L / 7 ) = 0 + g sin Θ t
t = √(10L/7g sin Θ)


Which one is correct? Why?
 
Last edited by a moderator:
Physics news on Phys.org
terryds said:

Homework Statement



http://www.sumoware.com/images/temp/xzdmdjtlksnfhiqc.png
A solid ball rolls perfectly with initial velocity v0 in horizontal axis ( y-axis ) on an inclined plane with elevation angle Θ as the picture above shown. This ball moves turning due to the gravitational acceleration till it has traveled distance L in x-axis when it's at the bottom of the plane.
Determine the time (t) the ball needs to get to the bottom of the plane ! (The ball doesn't slip while rolling)

Homework Equations


Rotational dynamics equation and linear kinematics equation
Or conservation of energy equation

The Attempt at a Solution



I have two methods to solve the problem. But, the answers are different.

Using rot. dynamics equation and linear kinematics.
I just consider the x-axis since it's what the question asks.
ΣFx = ma
mg sin Θ - f = ma (Note : f is friction force)
f = mg sin Θ - ma

Στ = I α
f R = I α
f R = I (a/R)
(mg sin Θ - ma) R = (2/5) m R^2 (a/R)
mg sin Θ - ma = (2/5) m a
g sin Θ - a = (2/5) a
(7/5) a = g sin Θ
a = (5/7) g sin Θ

Then, I use the kinematics equation
L = 0.5 a t^2
2L/a = t^2
14L/ (5g sin Θ) = t^2
t = √(14L/5g sinΘ)

But, using conservation of energy, I get different answer
m g sin Θ L = (1/2) m v^2 + (1/2) I ω^2
m g sin Θ L = (1/2) m v^2 + (1/2) (2/5 m R^2) (v^2 / R^2)
g sin Θ L = (1/2) v^2 + (1/5) m v^2
g sin Θ L = (7/10) v^2
v = √(10 g sin Θ L / 7 )

Then, I use the kinematics
vt = vox + a t
√(10 g sin Θ L / 7 ) = 0 + g sin Θ t
t = √(10L/7g sin Θ)


Which one is correct? Why?

Oops.. I think that I forgot that the acceleration is not g sin theta since there is friction.. ( I used a = g sin theta in using the kinematics )
Problem Solved :)
 
Last edited by a moderator:
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
I was thinking using 2 purple mattress samples, and taping them together, I do want other ideas though, the main guidelines are; Must have a volume LESS than 1600 cubic centimeters, and CAN'T exceed 25 cm in ANY direction. Must be LESS than 1 kg. NO parachutes. NO glue or Tape can touch the egg. MUST be able to take egg out in less than 1 minute. Grade A large eggs will be used.

Similar threads

Back
Top