Solving Block on a Sphere: Find Distance Below Top

  • Thread starter Thread starter anand
  • Start date Start date
  • Tags Tags
    Block Sphere
AI Thread Summary
A small block sliding from the top of a frictionless sphere loses contact at a distance of R/3 below the top. The problem can be analyzed using conservation of energy and the forces acting on the block, with the angle theta defined at the center of the sphere. The discussion explores how to approach the problem using both inclined and upright axes, noting that while the axes change, the final result remains the same. The key to finding the angle theta at which the normal force becomes zero is equating the centripetal force to the radial component of gravitational force. The user expresses uncertainty about their calculations and seeks clarification on resolving forces in the upright coordinate system.
anand
Messages
37
Reaction score
0

Homework Statement



A small block slides from rest from the top of a frictionless sphere of radius R.How far below the top,x,does it lose contact with the sphere?(Sphere doesn't move)


The Attempt at a Solution



The angle subtended by the block at the centre of the sphere can be taken as theta.If the x-axis is considered tangential to the surface and hence y-axis in the direction of the normal force,this problem can be solved,when combined with the conservation of energy.

N-mg cos(theta)=-mv^2/R
and
mgR(1-cos(theta))=1/2mv^2


Answer is R/3.

My question is,how do you solve this problem if the axes are taken "upright",instead of being inclined.i.e,the y-axis is vertical and x-axis is horizontal.
 
Physics news on Phys.org
The choice of axes for X and Y won't affect the result, obviously. You can use the same method for the calculation but X, Y and theta will be different.
If you rotate the axes by angle phi, the new X and Y values will be

X' = Xcos(phi) + Ysin(phi)
Y' = -Xsin(phi) + Ycos(phi)
theta' = theta + phi

If you calculate with X' and Y' you should get the same answer whatever phi is.
 
Thanks.
But what if I try to resolve the forces along the "upright" x and y axes,i.e,I get

N cos(theta)=mg+mv^2/R cos(theta)

and

N sin(theta)= mv^2/R sin(theta) and the energy equation.


Now,how do I find the theta at which N becomes zero(which is when it loses contact,right?)
 
It's the point at which the force along the radius ( centripetal) becomes equal to the radial component of mg ( vertical). Equate the forces and solve for theta.

[edit] I'm not so sure about this, my first attempt looks wrong and I don't have time to pursue it right now.
 
Last edited:
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top