Calculate the Lagrangian of a coupled pendulum system

DeldotB
Messages
117
Reaction score
8

Homework Statement



Calculate the Lagrangian of this set up:

Imagine having two ropes: They are both attached to the ceiling and have different lengths. One has length b and the other has length 4b. Say they are hooked to the ceiling a distance 4b apart. Now, the ropes are both hooked to a plank of mass M (uniform mass density) of length 5b. The rod can move in 3 dimensions. Ultimately, I am after the normal frequencies and normal modes of the system, but I think I can determine these if I can figure out this lagrangian

x3ilqr.png

Homework Equations



\mathcal{L} = T-U

The Attempt at a Solution



Well, I am not entirely sure how to go about this but my book suggests to use the coordinate x for the longitudinal displacement of the rod and y_1 and y_2 as the sideways displacement of the rods two ends. Also, we are only assuming small displacements from equilibrium (so I think \dot{z} is going to be zero)
Im not sure how to implement this choice of generalized coordinates.

Can anyone help me out? Also, I have never found a lagrangian for an extended object (its always been point masses in various systems)

Thanks in advance - btw I cannot find ANYTHING online that resembles a problem like this.
 
Physics news on Phys.org
I suggest you go about it in the usual way. Write down the lagrangian of the system by expressing the kinetic and potential energies, then express those in terms of the generalised coordinate(s).
 
I've never written down the lagrangian of an extended object. I realize the K.E of the plank would be the K.E of its center of mass (\frac{1}{2}m( \dot{x}^2+ \dot{y}^2) ) and probably some rotational K.E like \frac{1}{2} I \omega^2 but I don't know how the strings affect these terms...
 
DeldotB said:
I've never written down the lagrangian of an extended object. I realize the K.E of the plank would be the K.E of its center of mass (\frac{1}{2}m( \dot{x}^2+ \dot{y}^2) ) and probably some rotational K.E like \frac{1}{2} I \omega^2 but I don't know how the strings affect these terms...
The strings are massless. All you have to figure out is how they constrain the movement of the rod. You can do this by expressing the rod position (angle and com) in terms of your generalised coordinate and taking the time derivative to find the velocity and angular velocity of the rod.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top