Calculating Electric Field for 2 Test Charges

AI Thread Summary
To calculate the electric field at the origin due to two test charges, the values of q1 and q2 must first be converted from nanocoulombs to coulombs. The distances from the origin to each charge are calculated, and the electric field components are determined using the formula E = kq/r^2. The direction of the electric field vectors is crucial; for q1, which is negative, the field points upwards, while for q2, the components point towards the origin. The correct components of the electric field at the origin are Ex = 23.03 N/C and Ey = -15.6 N/C, reflecting the influences of both charges accurately.
jprforester
Messages
1
Reaction score
0

Homework Statement


Two test charges are located in the x–y plane. If q1 = -2.75 nC and is located at x = 0.00 m, y = 0.800 m and the second test charge has magnitude of q2 = 3.20 nC and is located at x = 1.00 m, y = 0.400 m,

calculate the x and y components, Ex and Ey, of the electric field, , in component form at the origin, (0,0). The Coulomb Force constant is 1/(4*pi*ε) = 8.99 × 10^9 N·m^2/C^2

given:
q1 = -2.75 nC; x = 0.00 m, y = 0.800 m
q2 = 3.20 nC; x = 1.00 m, y = 0.400 m

Homework Equations


E=kq/r^2

The Attempt at a Solution


So what I did was take the q1 and q2 values (given in nC) and convert them to C.
Next I took found the distance from the origin of the two points, solved using the E=kq/r^2 for each point where k=8.99e+9.
I found the components of the E1 (has only j component) and E2 (by solving the angle from the origin using tan^-1(y-distance/x-distance) and multiplying that by the E2 value)
then I added the two vectors together but still do not get the right answer.

I Calculated:
q1 = -2.75e-9 C
q2 = 3.20e-9 C
r1 = .8
r2 = sqrt(1^2 + .4^2) = 1.077
theta = tan^-1(.4/1) = 21.8 deg

I solved the equation
so E1 = -38.6 j (N/C)
and |E2| = 24.8 N/C => separate into components
E2 = 23.03 i + 9.21 j (N/C)

thus Ex = 23.03 N/C
Ey = -15.6 N/C
 
Physics news on Phys.org
Welcome to PF,

Basically, the directions of your components are wrong.

In vector form, the electric field of a charge q is $$\mathbf{E} = \frac{kq}{r^2}\mathbf{\hat{r}}$$Boldface quantities represent vectors, and the unit vector ##\mathbf{\hat{r}}## is a unit vector that points "radially outward" (i.e. away from the charge that is the source of the field). The vector ##-\mathbf{\hat{r}}## points towards the charge that is the source of the field. Unlike the Cartesian unit vectors ##\mathbf{\hat{i}}##, ##\mathbf{\hat{j}}##, and ##\mathbf{\hat{k}}##, whose directions are fixed, the direction of ##\mathbf{\hat{r}}## varies depending on where you are in space. In the case where you're located at the origin, and the source of the field, q1, is located on the y-axis at (0,0.8), the radial unit vector, which points away from the source charge and towards the location where you are evaluating the field, is in the ##-\mathbf{\hat{j}}## direction (i.e. ##\mathbf{\hat{r}}## = ##-\mathbf{\hat{j}}## in this particular case). HOWEVER because q1 is negative, this negative sign cancels out the one on the ##\mathbf{\hat{j}}##, and the E-field ends up pointing in the positive ##\mathbf{\hat{j}}## direction. So E1 is directed upwards along the y-axis, towards the charge q1. This make sense, because q1 is negative, so a positive test charge placed at the origin would be attracted up towards it.

Using a similar argument, you can reason that the x and y components of E2 should be in the ##-\mathbf{\hat{i}}## and ##-\mathbf{\hat{j}}## directions respectively (again, because ##\mathbf{\hat{r}}## points away from q2 and towards the origin, and q2 is positive this time).
 
Last edited:
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Replies
10
Views
1K
Replies
3
Views
2K
Replies
4
Views
2K
Replies
3
Views
1K
Replies
2
Views
4K
Replies
1
Views
2K
Replies
4
Views
3K
Back
Top