Calculating the 100th Derivative: Tips & Tricks

  • Thread starter Thread starter rteng
  • Start date Start date
  • Tags Tags
    Derivative
rteng
Messages
26
Reaction score
0
MATH-1.jpg


how would be the best way to do this?

I mean, I know how to find the derivative...

and it kind of makes a pattern...but I can't quite correlate that pattern to the 100th derivative
 
Physics news on Phys.org
Find f'(x).then f''(x) and then f'''(x) and see if you find a pattern happening so that you can find the nth derivative of f(x)
 
dammit

ha k thanks
 
y^{(n)}(x) = \sum_{k=0}^n {n \choose k} u^{(n-k)}(x)\; v^{(k)}(x)

This is known as the Leibniz rule (where y(x)=u(x)v(x)).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top