Calculating the Angle of a Pendulum Swing into a Peg

  • Thread starter Thread starter StrangerDanger
  • Start date Start date
  • Tags Tags
    pendulum projectile
AI Thread Summary
The discussion revolves around calculating the angle θ of a pendulum swing into a peg using the equation cosθ = r/L * cosα - √(3)/2 * (1 - r/L). The user expresses difficulty in progressing from their current solution attempt, specifically regarding the application of Newtonian position formulas, which are deemed unsuitable for non-uniform acceleration scenarios. Suggestions are made to consider conditions for angle β and the implications of the pendulum's trajectory on its motion. The conversation highlights the need for a deeper understanding of changing acceleration and its effects on the pendulum's behavior. Overall, the focus is on resolving the mathematical aspects of the pendulum problem rather than the physics fundamentals.
StrangerDanger
Messages
2
Reaction score
0

Homework Statement


With this problem I have to get the answer: cosθ = r/L * cosα - √(3)/2 * (1 - r/L)
which in other words mean I need to find angle θ with arccos[r/L * cosα - √(3)/2 * (1 - r/L)].

Here's the picture:
11d636180c.jpg

Lcosθ is the vertical length of the string at its lowest point.

rcosα is a fraction of that same vertical string in terms of displacement "r" (which is from the start of the string to the peg)

∠β is the angle between the peg and the horizon.

(L-r) sinβ is the height from the end of the peg and the horizontal

(L-r) cosα is the horizontal length of that same peg.

(L-r)cosα is the vertical length of the string from the ball to the peg.

So, this is not really a physics issue but more like a math issue but since this is a physics problem I've decided to put it under here.

My problem is that I am unable to continue from this point as shown on the picture of my attempt. I don't know where to continue from here on out. I am trying to find "t" for the equation but I am unsure how. Where do I continue from now?

Homework Equations


[/B]
Newtonian Position Formula:
yf = yi +viyt + .5gt2
xf = xi +vixt + .5gt2

Energy Equation:
Work of hand - force of friction * displacement = delta Kinetic Energy + delta Potential Energy

Wh - fF*d = [.5*mvf2 - .5*mvi2] - [mghf - mghi]

The Attempt at a Solution


Picture of Attempt:
e4bfe92db3.jpg
[/B]
 
Physics news on Phys.org
Hello Stranger, :welcome:

Your position formula is only valid for uniform acceleration. You don't have that here !
Can you think of a condition you can impose on ##\beta## ?
 
BvU said:
Hello Stranger, :welcome:

Your position formula is only valid for uniform acceleration. You don't have that here !
Can you think of a condition you can impose on ##\beta## ?

Thanks for the welcome :).
The only method I can think of when dealing with changing acceleration by breaking it into parts. Each part for every time the value of acceleration changes. I have not yet learned ho to derive very well but I know it exists. As for angle β I am clueless on what to impose.
 
Well, then perhaps you can conquer this one without dealing with changing acceleration ?
The sketch suggests a trajectory, but is it realistic ? Where must the mass run out of sped to fall on the peg ? What would happen if it ran out of speed at e.g. 85 degrees ?
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...

Similar threads

Replies
1
Views
3K
Replies
1
Views
832
Replies
3
Views
4K
Replies
15
Views
1K
Replies
3
Views
2K
Replies
21
Views
2K
Replies
9
Views
2K
Back
Top