- 1,753
- 143
Can someone tell me if I did this correctly, or if there's an easier way? Thanks!
A uniformly charged rod of length \ell with a charge density \lambda lies along the x-axis, with its midpoint at the origin. Find the electric field at a point on the x-axis, with x > \ell /2
The electric field of a differential element is
\overrightarrow {dE} = \frac{{kdQ}}{{r^2 }}
The charge of a differential element is
dQ = \lambda \,dx
Let P be a point on the x-axis to the right of the rod.
\overrightarrow E = \int\limits_{ - \ell /2}^{\ell /2} {\frac{{k\lambda \,dx}}{{r^2 }}}
The distance r from P to a differential element x is P-x
Pull out the constants.
\begin{array}{l}<br /> \overrightarrow E = k\lambda \int\limits_{ - \ell /2}^{\ell /2} {\frac{{\,1}}{{\left( {P - x} \right)^2 }}dx} \\ <br /> \\ <br /> \overrightarrow E = k\lambda \left[ {\frac{1}{{P - x}}} \right]_{ - \ell /2}^{\ell /2} = k\lambda \left( {\left( {\frac{1}{{P - \ell /2}}} \right) - \left( {\frac{1}{{P - \left( { - \ell /2} \right)}}} \right)} \right),\, - {\rm{\hat i}} \\ <br /> \\ <br /> \overrightarrow E = k\lambda \left( {\left( {\frac{1}{{P - \ell /2}}} \right) - \left( {\frac{1}{{P + \ell /2}}} \right)} \right) \\ <br /> \end{array}
A uniformly charged rod of length \ell with a charge density \lambda lies along the x-axis, with its midpoint at the origin. Find the electric field at a point on the x-axis, with x > \ell /2
The electric field of a differential element is
\overrightarrow {dE} = \frac{{kdQ}}{{r^2 }}
The charge of a differential element is
dQ = \lambda \,dx
Let P be a point on the x-axis to the right of the rod.
\overrightarrow E = \int\limits_{ - \ell /2}^{\ell /2} {\frac{{k\lambda \,dx}}{{r^2 }}}
The distance r from P to a differential element x is P-x
Pull out the constants.
\begin{array}{l}<br /> \overrightarrow E = k\lambda \int\limits_{ - \ell /2}^{\ell /2} {\frac{{\,1}}{{\left( {P - x} \right)^2 }}dx} \\ <br /> \\ <br /> \overrightarrow E = k\lambda \left[ {\frac{1}{{P - x}}} \right]_{ - \ell /2}^{\ell /2} = k\lambda \left( {\left( {\frac{1}{{P - \ell /2}}} \right) - \left( {\frac{1}{{P - \left( { - \ell /2} \right)}}} \right)} \right),\, - {\rm{\hat i}} \\ <br /> \\ <br /> \overrightarrow E = k\lambda \left( {\left( {\frac{1}{{P - \ell /2}}} \right) - \left( {\frac{1}{{P + \ell /2}}} \right)} \right) \\ <br /> \end{array}