Can This Differential Equation Be Solved by Separation of Variables?

SpaceIsCool
Messages
6
Reaction score
1

Homework Statement



We solved the differential equation (2.29),
3jQQorlME_t__2tW6a8kcnYMlu3IQt04D8vDrtjBPfupq1HsNrmZUl4xD1bMqDKY3ssnC-gk-e0sg9TyVu5zgFWU6VsDs5dw.png
, for the velocity of an object falling through air, by inspection---a most respectable way of solving differential equations. Nevertheless, one would sometimes like a more systematic method, and here is one. Rewrite the equation in the “separated” form

XX1f9LT1V4iwLFhOj0k17drHhyTjkFlbPurmlbw2iveZyOY70N-4lnsJ8nUSC3cy-BfGiq8hJ43C7kc4ynZMgcGMLMb88cfc.png


and integrate both sides from time 0 to
hFE8d86mE5qF60vFSYngvVUpWFO68N1uVz5xGeu-sdHjYX8yyDs4qyalPiGohlD-DzZB5cO0NK1No--OW9J5HFcXei2jS3kR.png
to find
G2YEY28crCFfirUT4r7rOHNBaqxt3skHs4ekGyy7QIkYNYJMb9qQRwnt8Y4FDIwi7g143bzRjZdRbStBbwEfDVbrHMPtZ2wq.png
as a function of
8O4uKQnrmKWgR9UXYtK_PW1xcKLsdhnUg2degFW--u1CO84TGSRm2KcGLfcbAWyOdelH6M3yuu9tGdKH2IV5ExkbePnjzWzD.png
. Compare with (2.30).

Homework Equations



XX1f9LT1V4iwLFhOj0k17drHhyTjkFlbPurmlbw2iveZyOY70N-4lnsJ8nUSC3cy-BfGiq8hJ43C7kc4ynZMgcGMLMb88cfc.png
[/B], equation to integrate/solve.

5QaZ9UrgA6wAB6mhn4OqOWzSES5iMKWq5HeIyNUGso3ndh-iMCdNLtkStb_BTCMFG1FJftZiANbli2Zo348uSWuMx19EXBa9.png
, answer should like this.

The Attempt at a Solution



Integrate both sides of the separated form of the differential equation from time 0 to t and then write
FNV42vu_LJT7kC0fuNcaHis6ixZXlVrOAWtlALmrPOaeDAfRi_eI6YIiiGtmYj4_vUbVjdFCqhOINDnhpPXX6F29AvH3d_5M.png
. After this, I will compare my answer to equation 2.30 which is
5QaZ9UrgA6wAB6mhn4OqOWzSES5iMKWq5HeIyNUGso3ndh-iMCdNLtkStb_BTCMFG1FJftZiANbli2Zo348uSWuMx19EXBa9.png
.

AATrdWCxsgaZiMrK_EVvJA8r04k2mPrRD1RkRyOQjLMBfO8Jfd-cB-T9FosAtd6RnF_lwC5ufVhlxA1bD43bwv94WCNop01A.png
. This gives
uVh4fi89LFMNhydQFiEj8Zqg5PcabxW1p9-KV6nFoYOPqGd4OFBd8OASdAY4nJzF3TsXecQhJvXOE85om7SsDJ8T7SuvcY7F.png
. This is as far as I could get. I don't know how to get it into the form v_y(t).
 

Attachments

  • 3jQQorlME_t__2tW6a8kcnYMlu3IQt04D8vDrtjBPfupq1HsNrmZUl4xD1bMqDKY3ssnC-gk-e0sg9TyVu5zgFWU6VsDs5dw.png
    3jQQorlME_t__2tW6a8kcnYMlu3IQt04D8vDrtjBPfupq1HsNrmZUl4xD1bMqDKY3ssnC-gk-e0sg9TyVu5zgFWU6VsDs5dw.png
    5.7 KB · Views: 716
  • XX1f9LT1V4iwLFhOj0k17drHhyTjkFlbPurmlbw2iveZyOY70N-4lnsJ8nUSC3cy-BfGiq8hJ43C7kc4ynZMgcGMLMb88cfc.png
    XX1f9LT1V4iwLFhOj0k17drHhyTjkFlbPurmlbw2iveZyOY70N-4lnsJ8nUSC3cy-BfGiq8hJ43C7kc4ynZMgcGMLMb88cfc.png
    5.8 KB · Views: 580
  • hFE8d86mE5qF60vFSYngvVUpWFO68N1uVz5xGeu-sdHjYX8yyDs4qyalPiGohlD-DzZB5cO0NK1No--OW9J5HFcXei2jS3kR.png
    hFE8d86mE5qF60vFSYngvVUpWFO68N1uVz5xGeu-sdHjYX8yyDs4qyalPiGohlD-DzZB5cO0NK1No--OW9J5HFcXei2jS3kR.png
    508 bytes · Views: 585
  • G2YEY28crCFfirUT4r7rOHNBaqxt3skHs4ekGyy7QIkYNYJMb9qQRwnt8Y4FDIwi7g143bzRjZdRbStBbwEfDVbrHMPtZ2wq.png
    G2YEY28crCFfirUT4r7rOHNBaqxt3skHs4ekGyy7QIkYNYJMb9qQRwnt8Y4FDIwi7g143bzRjZdRbStBbwEfDVbrHMPtZ2wq.png
    1.2 KB · Views: 545
  • 8O4uKQnrmKWgR9UXYtK_PW1xcKLsdhnUg2degFW--u1CO84TGSRm2KcGLfcbAWyOdelH6M3yuu9tGdKH2IV5ExkbePnjzWzD.png
    8O4uKQnrmKWgR9UXYtK_PW1xcKLsdhnUg2degFW--u1CO84TGSRm2KcGLfcbAWyOdelH6M3yuu9tGdKH2IV5ExkbePnjzWzD.png
    508 bytes · Views: 554
  • XX1f9LT1V4iwLFhOj0k17drHhyTjkFlbPurmlbw2iveZyOY70N-4lnsJ8nUSC3cy-BfGiq8hJ43C7kc4ynZMgcGMLMb88cfc.png
    XX1f9LT1V4iwLFhOj0k17drHhyTjkFlbPurmlbw2iveZyOY70N-4lnsJ8nUSC3cy-BfGiq8hJ43C7kc4ynZMgcGMLMb88cfc.png
    5.8 KB · Views: 577
  • 5QaZ9UrgA6wAB6mhn4OqOWzSES5iMKWq5HeIyNUGso3ndh-iMCdNLtkStb_BTCMFG1FJftZiANbli2Zo348uSWuMx19EXBa9.png
    5QaZ9UrgA6wAB6mhn4OqOWzSES5iMKWq5HeIyNUGso3ndh-iMCdNLtkStb_BTCMFG1FJftZiANbli2Zo348uSWuMx19EXBa9.png
    4.9 KB · Views: 586
  • FNV42vu_LJT7kC0fuNcaHis6ixZXlVrOAWtlALmrPOaeDAfRi_eI6YIiiGtmYj4_vUbVjdFCqhOINDnhpPXX6F29AvH3d_5M.png
    FNV42vu_LJT7kC0fuNcaHis6ixZXlVrOAWtlALmrPOaeDAfRi_eI6YIiiGtmYj4_vUbVjdFCqhOINDnhpPXX6F29AvH3d_5M.png
    2.6 KB · Views: 606
  • 5QaZ9UrgA6wAB6mhn4OqOWzSES5iMKWq5HeIyNUGso3ndh-iMCdNLtkStb_BTCMFG1FJftZiANbli2Zo348uSWuMx19EXBa9.png
    5QaZ9UrgA6wAB6mhn4OqOWzSES5iMKWq5HeIyNUGso3ndh-iMCdNLtkStb_BTCMFG1FJftZiANbli2Zo348uSWuMx19EXBa9.png
    4.9 KB · Views: 619
  • AATrdWCxsgaZiMrK_EVvJA8r04k2mPrRD1RkRyOQjLMBfO8Jfd-cB-T9FosAtd6RnF_lwC5ufVhlxA1bD43bwv94WCNop01A.png
    AATrdWCxsgaZiMrK_EVvJA8r04k2mPrRD1RkRyOQjLMBfO8Jfd-cB-T9FosAtd6RnF_lwC5ufVhlxA1bD43bwv94WCNop01A.png
    6.3 KB · Views: 581
  • uVh4fi89LFMNhydQFiEj8Zqg5PcabxW1p9-KV6nFoYOPqGd4OFBd8OASdAY4nJzF3TsXecQhJvXOE85om7SsDJ8T7SuvcY7F.png
    uVh4fi89LFMNhydQFiEj8Zqg5PcabxW1p9-KV6nFoYOPqGd4OFBd8OASdAY4nJzF3TsXecQhJvXOE85om7SsDJ8T7SuvcY7F.png
    5.8 KB · Views: 628
Physics news on Phys.org
DrClaude said:
@SpaceIsCool In case you don’t understand that, your first relavent equation will look like:
$$(md\upsilon_y) / (\upsilon_y - \upsilon_{ter}) = -bdt$$

The code is:
Code:
(md\upsilon_y) / (\upsilon_y - \upsilon_{ter}) = -bdt
 
Young physicist said:
@SpaceIsCool In case you don’t understand that, your first relavent equation will look like:
$$(md\upsilon_y) / (\upsilon_y - \upsilon_{ter}) = -bdt$$

The code is:
Code:
(md\upsilon_y) / (\upsilon_y - \upsilon_{ter}) = -bdt
Hello,

I'm not asking about latex help. Do I need to fix this before this question can be answered? I'm kinda new to using the forum.
 
SpaceIsCool said:
I'm not asking about latex help. Do I need to fix this before this question can be answered? I'm kinda new to using the forum.
You can leave it as is for now, but please write the equations directly in the post instead of inserting them as figures. It makes the post harder to read and difficult to quote.
 
  • Like
Likes YoungPhysicist
DrClaude said:
You can leave it as is for now, but please write the equations directly in the post instead of inserting them as figures. It makes the post harder to read and difficult to quote.

Okay. I understand. Thanks!
 
  • Like
Likes YoungPhysicist
##v''=\frac{d^2v}{dt^2}##, not ##\frac{dv}{dy}##. So your whole methodology from step 1 is incorrect.

If you had a course in differential equations, didn't they teach you how to solve an n'th order linear ordinary differential equation with constant coefficients?
 
Perhaps the differential equation is ##m\dot{v_y}=-b(v_y-v_{ter})##? if yes then what you doing seems correct except from the last integration step which should be

$$m(\ln|v_y-v_{ter}|-\ln|v_{y_0}-v_{ter}|)=-bt$$
This after some algebraic manipulation I believe it agrees with your equation (2.30).Otherwise if the ODE is exactly as you write at OP then as @Chestermiller notes, you go wrong from the first step cause it is ##\ddot{v_y}=\frac{d^2v_y}{dt^2}## and its NOT ##\ddot{v_y}=\frac{dv_y}{dt}## which you seem to use in order to do separation of variables.
 
Last edited:
Back
Top