Change of Variables: Evaluating Double Integral over R with Cosine Function

fk378
Messages
366
Reaction score
0

Homework Statement


Evaluate the double integral over R of cos[(y-x)/(y+x)] dA where R is the trapezoidal region with vertices (1,0) (2,0) (0,1) and (0,2).


The Attempt at a Solution



First I set u=y-x, v=y+x. I have 4 sides in the xy-plane that need to be transformed into the uv-plane. Side 1 is y=-x+2, Side 2 is y=-x+1, and then Side 3 & 4 are 0<x<2 (where the less than sign signifies less than or equal to).

I solved for v, and got v=1, v=2, so I have those limits. But I can't figure out how to find the limits for u.
 
Physics news on Phys.org
u+v = 2y
u-v = -2x

using x = 0, y =y and x =x, y = 0

you can get u = v and u = -v

I don't know better method to find these limits
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top