- 489

- 0

**1. Homework Statement**

Using series/parallel resistance combination, find the equivalent resistance seen by the source in the circuit below. Find the overall dissipated power.

http://img300.imageshack.us/img300/6132/chapter2problem34au4.jpg [Broken]

**2. Homework Equations**

For resistors in series: [tex]R_{eq}\,=\,R_1\,+\,R_2\,+\,\cdots\,+\,R_n[/tex]

For resistors in parallel: [tex]R_{eq}\,=\,\frac{1}{R_1}\,+\,\frac{1}{R_2}\,+\,\cdots\,+\,\frac{1}{R_n}[/tex]

Also for resistors in parallel: [tex]R_{eq}\,=\,\frac{R_1\,R_2}{R_1\,+\,R_2}[/tex]

**3. The Attempt at a Solution**

Adding the right three resistors that are in series to get an equivalent one that is 40 Ohms.

http://img205.imageshack.us/img205/1186/chapter2problem34part2dk8.jpg [Broken]

Using the formula above for parallel resistors: [tex]R_{eq}\,=\,\frac{(40\Omega)\,(40\Omega)}{(40\Omega)\,+\,(40\Omega)}\,=\, 20\Omega[/tex]

http://img391.imageshack.us/img391/7092/chapter2problem34part3ur9.jpg [Broken]

Again, combining the resistors on the right that are in series.

http://img205.imageshack.us/img205/5549/chapter2problem34part4jn1.jpg [Broken]

Using the parallel formula again: [tex]R_{eq}\,=\,\frac{(40\Omega)\,(40\Omega)}{(40\Omega)\,+\,(40\Omega)}\,=\, 20\Omega[/tex]

http://img397.imageshack.us/img397/9507/chapter2problem34part5su9.jpg [Broken]

Finally, adding the last two resistors in series, I get an [itex]R_{eq}[/itex] of [itex]40\Omega[/itex]. Does this seem correct?

http://img300.imageshack.us/img300/2751/chapter2problem34part6ma8.jpg [Broken]

Then, to find the Power, I get the current first.

[tex]i\,=\,\frac{v}{R}\,=\,\frac{12\,V}{40\Omega}\,=\,0.3\,A[/tex]

The I use the p = vi equation.

[tex]p\,=\,v\,i\,=\,\left(12\,V\right)\,\left(0.3\,A\right)\,=\,3.6\,W[/tex]

Right?

Last edited by a moderator: