13Treize
- 6
- 0
Homework Statement
A system with only one degree of freedom is described by the following Hamiltonian:
H = \frac{p^2}{2A} + Bqpe^{-\alpha t} + \frac{AB}{2}q^2 e^{-\alpha t}(\alpha + Be^{-\alpha t}) + \frac{kq^2}{2}
with A, B, alpha and k constants.
a) Find a Lagrangian corresponding to this Hamiltonian;
b) Find an equivalent Lagrangian which is not explicitly time-dependent;
c) What Hamiltonian corresponds to this second Lagrangian, and how is it related to the original Hamiltonian?
Homework Equations
Since this system has only one degree of freedom, the Hamiltonian is
H = \dot{q}p - L
which implies that the Lagrangian is
L = \dot{q}p - H
Also, canonical momentum p is defined as
p_i \equiv \frac{\partial L(q_j,\dot{q_j},t)}{\partial \dot{q_i}} \\<br /> \Rightarrow p = \frac{\partial L}{\partial \dot{q}}
The Attempt at a Solution
I've manipulated the Hamiltonian enough now that I'm pretty sure it corresponds to a damped harmonic oscillator with mass A. I also have a pretty good idea of what I should be doing, but I stumble at every step. We've just started working on the Hamiltonian formulation in class, so nothing is automatic yet. This is also the first time homework deals with a Lagrangian that is explicitly dependent on time.
First step is obviously obtaining L(q,\dot{q},p,t) by using the second Legendre transformation above, which is trivial. Next, I want to remove p to obtain a proper L(q,\dot{q},t). This is where I hit the first obstacle. Using the definition of p_i doesn't help here, because p = \frac{\partial L(q,\dot{q},p,t)}{\partial \dot{q}} = p. So, I have no way to formally obtain p = p(q,\dot{q},t) to obtain the real Lagrangian L(q,\dot{q},t). Nevertheless, intuition suggests p = \dot{q}, which would give the explicitly time-dependent Lagrangian
L = \frac{p^2}{2A}\ + \ Bq\dot{q}e^{-\alpha t} \ - \ \frac{AB}{2}q^2 \alpha e^{-\alpha t} \ - \ \frac{A B^2}{2}q^2e^{-2\alpha t} \ - \ \frac{kq^2}{2}
From there on, I'm clueless as how to make the time-dependence disappear. I've tried completing the square of the 3rd and 4th terms, tried to link the 2nd and 3rd terms through a total time derivative, a combination of both these approaches, etc.. but nothing seems to be working correctly. (Except posing B = e^{\alpha t} which is not allowed because B is a constant... but one can dream that homework should be that easy.

And obviously, since I can't get a time-independent Lagrangian, I can't use that to obtain a time-independent Hamiltonian and compare it to the original Hamiltonian.
So to sum up, these are my questions:
1) Knowing H, how do I find p = p(q,\dot{q},t) to get a "clean" Lagrangian?
2) Having found that time-dependent Lagrangian, how do I remove the explicit time dependency?
Any hint would be greatly appreciated. Thank you very much.