Conserved Noether current under U(1) symmetry of some Lagrangian

spaghetti3451
Messages
1,311
Reaction score
31

Homework Statement



The motion of a complex field ##\psi(x)## is governed by the Lagrangian ##\mathcal{L} = \partial_{\mu}\psi^{*}\partial^{\mu}\psi-m^{2}\psi^{*}\psi-\frac{\lambda}{2}(\psi^{*}\psi)^{2}##.

Write down the Euler-Lagrange field equations for this system.

Verify that the Lagrangian is invariant under the infinitesimal transformation ##\delta \psi = i \alpha \psi, \delta \psi^{*} = - i \alpha \psi^{*}##

Derive the Noether current associated with this transformation and verify explicitly that it is conserved using the field equations satisfied by ##\psi##.

Homework Equations



The Attempt at a Solution



##\mathcal{L} = \partial_{\mu}\psi^{*}\partial^{\mu}\psi-m^{2}\psi^{*}\psi-\frac{\lambda}{2}(\psi^{*}\psi)^{2}##

Here's my derivation of the Euler-Lagrange field equations:

##\frac{\partial \mathcal{L}}{\partial \psi} = -m^{2}\psi^{*}-\lambda (\psi^{*}\psi)\psi^{*}##

and

##\frac{\partial \mathcal{L}}{\partial (\partial_{\rho}\psi)} = \frac{\partial}{\partial (\partial_{\rho}\psi)} \Big( \partial_{\mu}\psi^{*}\partial^{\mu}\psi \Big)= \frac{\partial}{\partial (\partial_{\rho}\psi)} \Big( \eta^{\mu\nu}\partial_{\mu}\psi^{*}\partial_{\nu}\psi \Big)=\eta^{\mu\nu}\frac{\partial}{\partial (\partial_{\rho}\psi)} \Big( \partial_{\mu}\psi^{*}\partial_{\nu}\psi \Big)=\eta^{\mu\nu}{\eta^{\rho}}_{\nu}\partial_{\mu}\psi^{*}={\eta^{\rho}}_{\nu}\eta^{\nu\mu}\partial_{\mu}\psi^{*}=\partial^{\rho}\psi^{*}##

so that

##\frac{\partial \mathcal{L}}{\partial \psi} - \partial_{\mu}\Big(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\psi)}\Big)=0##

##-m^{2}\psi^{*}-\lambda(\psi^{*}\psi)\psi^{*}-\partial^{2}\psi^{*}=0##

##(\partial^{2}+m^{2}+\lambda|\psi|^{2})\psi^{*}=0##

Furthermore,

##\frac{\partial \mathcal{L}}{\partial \psi^{*}} = -m^{2}\psi-\lambda (\psi^{*}\psi)\psi##

and

##\frac{\partial \mathcal{L}}{\partial (\partial_{\rho}\psi^{*})} = \frac{\partial}{\partial (\partial_{\rho}\psi^{*})} \Big( \partial_{\mu}\psi^{*}\partial^{\mu}\psi \Big)={\eta^{\rho}}_{\mu}\partial^{\mu}\psi=\partial^{\rho}\psi##

so that

##\frac{\partial \mathcal{L}}{\partial \psi^{*}} - \partial_{\mu}\Big(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\Big)=0##

##-m^{2}\psi-\lambda(\psi^{*}\psi)\psi-\partial^{2}\psi=0##

##(\partial^{2}+m^{2}+\lambda|\psi|^{2})\psi=0##

Am I correct so far?
 
Physics news on Phys.org
failexam said:

Homework Statement



The motion of a complex field ##\psi(x)## is governed by the Lagrangian ##\mathcal{L} = \partial_{\mu}\psi^{*}\partial^{\mu}\psi-m^{2}\psi^{*}\psi-\frac{\lambda}{2}(\psi^{*}\psi)^{2}##.

Write down the Euler-Lagrange field equations for this system.

Verify that the Lagrangian is invariant under the infinitesimal transformation ##\delta \psi = i \alpha \psi, \delta \psi^{*} = - i \alpha \psi^{*}##

Derive the Noether current associated with this transformation and verify explicitly that it is conserved using the field equations satisfied by ##\psi##.

Homework Equations



The Attempt at a Solution



##\mathcal{L} = \partial_{\mu}\psi^{*}\partial^{\mu}\psi-m^{2}\psi^{*}\psi-\frac{\lambda}{2}(\psi^{*}\psi)^{2}##

Here's my derivation of the Euler-Lagrange field equations:

##\frac{\partial \mathcal{L}}{\partial \psi} = -m^{2}\psi^{*}-\lambda (\psi^{*}\psi)\psi^{*}##

and

##\frac{\partial \mathcal{L}}{\partial (\partial_{\rho}\psi)} = \frac{\partial}{\partial (\partial_{\rho}\psi)} \Big( \partial_{\mu}\psi^{*}\partial^{\mu}\psi \Big)= \frac{\partial}{\partial (\partial_{\rho}\psi)} \Big( \eta^{\mu\nu}\partial_{\mu}\psi^{*}\partial_{\nu}\psi \Big)=\eta^{\mu\nu}\frac{\partial}{\partial (\partial_{\rho}\psi)} \Big( \partial_{\mu}\psi^{*}\partial_{\nu}\psi \Big)=\eta^{\mu\nu}{\eta^{\rho}}_{\nu}\partial_{\mu}\psi^{*}={\eta^{\rho}}_{\nu}\eta^{\nu\mu}\partial_{\mu}\psi^{*}=\partial^{\rho}\psi^{*}##

so that

##\frac{\partial \mathcal{L}}{\partial \psi} - \partial_{\mu}\Big(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\psi)}\Big)=0##

##-m^{2}\psi^{*}-\lambda(\psi^{*}\psi)\psi^{*}-\partial^{2}\psi^{*}=0##

##(\partial^{2}+m^{2}+\lambda|\psi|^{2})\psi^{*}=0##

Furthermore,

##\frac{\partial \mathcal{L}}{\partial \psi^{*}} = -m^{2}\psi-\lambda (\psi^{*}\psi)\psi##

and

##\frac{\partial \mathcal{L}}{\partial (\partial_{\rho}\psi^{*})} = \frac{\partial}{\partial (\partial_{\rho}\psi^{*})} \Big( \partial_{\mu}\psi^{*}\partial^{\mu}\psi \Big)={\eta^{\rho}}_{\mu}\partial^{\mu}\psi=\partial^{\rho}\psi##

so that

##\frac{\partial \mathcal{L}}{\partial \psi^{*}} - \partial_{\mu}\Big(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\Big)=0##

##-m^{2}\psi-\lambda(\psi^{*}\psi)\psi-\partial^{2}\psi=0##

##(\partial^{2}+m^{2}+\lambda|\psi|^{2})\psi=0##

Am I correct so far?

It looks right to me.
 
Thanks!

Next, I need to verify that the Lagrangian is invariant under the infinitesimal transformation ##\delta \psi = i \alpha \psi, \delta \psi^{*} = - i \alpha \psi^{*}##.

Therefore,

##\mathcal{L} = \partial_{\mu}\psi^{*}\partial^{\mu}\psi-m^{2}\psi^{*}\psi-\frac{\lambda}{2}(\psi^{*}\psi)^{2}##
##\implies \delta\mathcal{L} = \delta(\partial_{\mu}\psi^{*}\partial^{\mu}\psi-m^{2}\psi^{*}\psi-\frac{\lambda}{2}(\psi^{*}\psi)^{2})##
##\implies \delta\mathcal{L} = \partial_{\mu}(\delta\psi^{*})(\partial^{\mu}\psi)+(\partial_{\mu}\psi^{*})\partial^{\mu}(\delta\psi)-m^{2}\psi(\delta\psi^{*})-m^{2}\psi^{*}(\delta\psi)-\lambda|\psi|^{2}\psi^{*}\delta\psi-\lambda|\psi|^{2}\psi\delta\psi^{*}##
##\implies \delta\mathcal{L} = \partial_{\mu}(-i\alpha \psi^{*})(\partial^{\mu}\psi)+(\partial_{\mu}\psi^{*})\partial^{\mu}(i\alpha\psi)-m^{2}\psi(-i\alpha\psi^{*})-m^{2}\psi^{*}(i\alpha\psi)-\lambda|\psi|^{2}\psi^{*}(i\alpha\psi)-\lambda|\psi|^{2}\psi(-i\alpha\psi^{*})##
##\implies \delta\mathcal{L} = -i\alpha(\partial_{\mu}\psi^{*})(\partial^{\mu}\psi)+i\alpha(\partial_{\mu}\psi^{*})(\partial^{\mu}\psi)+i\alpha(m^{2}\psi\psi^{*})-i\alpha(m^{2}\psi^{*}\psi)-i\alpha(\lambda|\psi|^{2}\psi^{*}\psi)+i\alpha(\lambda|\psi|^{2}\psi\psi^{*})##
##\implies \delta\mathcal{L} = 0##, due to pairwise cancellation.

So, the Lagrangian ##\mathcal{L} = \partial_{\mu}\psi^{*}\partial^{\mu}\psi-m^{2}\psi^{*}\psi-\frac{\lambda}{2}(\psi^{*}\psi)^{2}## is invariant under the infinitesimal transformation ##\delta \psi = i \alpha \psi, \delta \psi^{*} = - i \alpha \psi^{*}##.

Is my working correct?
 
failexam said:
Thanks!

Next, I need to verify that the Lagrangian is invariant under the infinitesimal transformation ##\delta \psi = i \alpha \psi, \delta \psi^{*} = - i \alpha \psi^{*}##.

Therefore,

##\mathcal{L} = \partial_{\mu}\psi^{*}\partial^{\mu}\psi-m^{2}\psi^{*}\psi-\frac{\lambda}{2}(\psi^{*}\psi)^{2}##
##\implies \delta\mathcal{L} = \delta(\partial_{\mu}\psi^{*}\partial^{\mu}\psi-m^{2}\psi^{*}\psi-\frac{\lambda}{2}(\psi^{*}\psi)^{2})##
##\implies \delta\mathcal{L} = \partial_{\mu}(\delta\psi^{*})(\partial^{\mu}\psi)+(\partial_{\mu}\psi^{*})\partial^{\mu}(\delta\psi)-m^{2}\psi(\delta\psi^{*})-m^{2}\psi^{*}(\delta\psi)-\lambda|\psi|^{2}\psi^{*}\delta\psi-\lambda|\psi|^{2}\psi\delta\psi^{*}##
##\implies \delta\mathcal{L} = \partial_{\mu}(-i\alpha \psi^{*})(\partial^{\mu}\psi)+(\partial_{\mu}\psi^{*})\partial^{\mu}(i\alpha\psi)-m^{2}\psi(-i\alpha\psi^{*})-m^{2}\psi^{*}(i\alpha\psi)-\lambda|\psi|^{2}\psi^{*}(i\alpha\psi)-\lambda|\psi|^{2}\psi(-i\alpha\psi^{*})##
##\implies \delta\mathcal{L} = -i\alpha(\partial_{\mu}\psi^{*})(\partial^{\mu}\psi)+i\alpha(\partial_{\mu}\psi^{*})(\partial^{\mu}\psi)+i\alpha(m^{2}\psi\psi^{*})-i\alpha(m^{2}\psi^{*}\psi)-i\alpha(\lambda|\psi|^{2}\psi^{*}\psi)+i\alpha(\lambda|\psi|^{2}\psi\psi^{*})##
##\implies \delta\mathcal{L} = 0##, due to pairwise cancellation.

So, the Lagrangian ##\mathcal{L} = \partial_{\mu}\psi^{*}\partial^{\mu}\psi-m^{2}\psi^{*}\psi-\frac{\lambda}{2}(\psi^{*}\psi)^{2}## is invariant under the infinitesimal transformation ##\delta \psi = i \alpha \psi, \delta \psi^{*} = - i \alpha \psi^{*}##.

Is my working correct?

Yes.
 
Thanks!

Finally, I need to derive the Noether current ##j^{\mu}## associated with the infinitesimal transformation ##\delta \psi = i \alpha \psi, \delta \psi^{*} = - i \alpha \psi^{*}## and verify explicitly that the Noether current ##j^{\mu}## is conserved using the field equations ##(\partial^{2}+m^{2}+\lambda|\psi|^{2})\psi=0## and ##(\partial^{2}+m^{2}+\lambda|\psi|^{2})\psi^{*}=0## satisfied by ##\psi##.

##\delta\mathcal{L}=\frac{\delta\mathcal{L}}{\delta\psi}\delta\psi+\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi)}\partial_{\mu}(\delta\psi)+\frac{\delta\mathcal{L}}{\delta\psi^{*}}\delta\psi^{*}+\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\partial_{\mu}(\delta\psi^{*})##
##\implies \delta\mathcal{L}=\frac{\delta\mathcal{L}}{\delta\psi}\delta\psi+\partial_{\mu}\Big(\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi)}\delta\psi\Big)-\partial_{\mu}\Big(\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi)}\Big)\delta\psi+\frac{\delta\mathcal{L}}{\delta\psi^{*}}\delta\psi^{*}+\partial_{\mu}\Big(\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\delta\psi^{*}\Big)-\partial_{\mu}\Big(\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\Big)\delta\psi^{*}##
##\implies \delta\mathcal{L}=\partial_{\mu}\Big[\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi)}\delta\psi+\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\delta\psi^{*}\Big]##
##\implies \partial_{\mu}\Big[\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi)}\delta\psi+\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\delta\psi^{*}\Big]=0##
##\implies j^{\mu} = \frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi)}\delta\psi+\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\delta\psi^{*}##
##\implies j^{\mu} = (\partial^{\mu}\psi^{*})(i\alpha\psi)+(\partial^{\mu}\psi)(-i\alpha\psi^{*})##
##\implies j^{\mu} = i\alpha (\psi(\partial^{\mu}\psi^{*})-\psi^{*}(\partial^{\mu}\psi))##

and

##\partial_{\mu}j^{\mu}=i\alpha\partial_{\mu}[\psi(\partial^{\mu}\psi^{*})-\psi^{*}(\partial^{\mu}\psi)]##
##\implies \partial_{\mu}j^{\mu}=i\alpha[(\partial_{\mu}\psi)(\partial^{\mu}\psi^{*})+\psi(\partial_{\mu}\partial^{\mu}\psi^{*})-(\partial_{\mu}\psi^{*})(\partial^{\mu}\psi)-\psi^{*}(\partial_{\mu}\partial^{\mu}\psi)]##
##\implies \partial_{\mu}j^{\mu}=i\alpha[(\partial_{\mu}\psi)(\partial^{\mu}\psi^{*})+\psi(-m^{2}-\lambda|\psi|^{2})\psi^{*}-(\partial_{\mu}\psi^{*})(\partial^{\mu}\psi)-\psi^{*}(-m^{2}-\lambda|\psi|^{2})\psi]##
##\implies \partial_{\mu}j^{\mu}=0##, due to pairwise cancellation.

Are my answers correct?
 
failexam said:
Thanks!

Finally, I need to derive the Noether current ##j^{\mu}## associated with the infinitesimal transformation ##\delta \psi = i \alpha \psi, \delta \psi^{*} = - i \alpha \psi^{*}## and verify explicitly that the Noether current ##j^{\mu}## is conserved using the field equations ##(\partial^{2}+m^{2}+\lambda|\psi|^{2})\psi=0## and ##(\partial^{2}+m^{2}+\lambda|\psi|^{2})\psi^{*}=0## satisfied by ##\psi##.

##\delta\mathcal{L}=\frac{\delta\mathcal{L}}{\delta\psi}\delta\psi+\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi)}\partial_{\mu}(\delta\psi)+\frac{\delta\mathcal{L}}{\delta\psi^{*}}\delta\psi^{*}+\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\partial_{\mu}(\delta\psi^{*})##
##\implies \delta\mathcal{L}=\frac{\delta\mathcal{L}}{\delta\psi}\delta\psi+\partial_{\mu}\Big(\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi)}\delta\psi\Big)-\partial_{\mu}\Big(\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi)}\Big)\delta\psi+\frac{\delta\mathcal{L}}{\delta\psi^{*}}\delta\psi^{*}+\partial_{\mu}\Big(\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\delta\psi^{*}\Big)-\partial_{\mu}\Big(\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\Big)\delta\psi^{*}##
##\implies \delta\mathcal{L}=\partial_{\mu}\Big[\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi)}\delta\psi+\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\delta\psi^{*}\Big]##
##\implies \partial_{\mu}\Big[\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi)}\delta\psi+\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\delta\psi^{*}\Big]=0##
##\implies j^{\mu} = \frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi)}\delta\psi+\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\delta\psi^{*}##
##\implies j^{\mu} = (\partial^{\mu}\psi^{*})(i\alpha\psi)+(\partial^{\mu}\psi)(-i\alpha\psi^{*})##
##\implies j^{\mu} = i\alpha (\psi(\partial^{\mu}\psi^{*})-\psi^{*}(\partial^{\mu}\psi))##

and

##\partial_{\mu}j^{\mu}=i\alpha\partial_{\mu}[\psi(\partial^{\mu}\psi^{*})-\psi^{*}(\partial^{\mu}\psi)]##
##\implies \partial_{\mu}j^{\mu}=i\alpha[(\partial_{\mu}\psi)(\partial^{\mu}\psi^{*})+\psi(\partial_{\mu}\partial^{\mu}\psi^{*})-(\partial_{\mu}\psi^{*})(\partial^{\mu}\psi)-\psi^{*}(\partial_{\mu}\partial^{\mu}\psi)]##
##\implies \partial_{\mu}j^{\mu}=i\alpha[(\partial_{\mu}\psi)(\partial^{\mu}\psi^{*})+\psi(-m^{2}-\lambda|\psi|^{2})\psi^{*}-(\partial_{\mu}\psi^{*})(\partial^{\mu}\psi)-\psi^{*}(-m^{2}-\lambda|\psi|^{2})\psi]##
##\implies \partial_{\mu}j^{\mu}=0##, due to pairwise cancellation.

Are my answers correct?

I think that's all correct.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top