Conversion of cartesian coordinates to polar coordinates

CostasDBD
Messages
2
Reaction score
0
1. Was wondering if anyone could help me confirm the polar limits of integration for the below double integral problem. The question itself is straight forward in cartesian coordinates, but in polar form, I'm a bit suspect of my theta limits after having sketched the it out. any help much appreciated.



2. Homework Equations

\int^{6}_{0}\int^{y}_{0}xdxdy

in polar form:

\int^{\frac{\pi}{2}}_{\frac{\pi}{4}}\int^{6cosec\theta}_{0} r^{2}cos\theta dr d\theta


The Attempt at a Solution



Using a trig substitution over pi/2 and pi/4, i get an answer of 36. it's just when i sketch it, i get a triangle which only has half that area. am i missing something obvious? cheers
 
Physics news on Phys.org
Welcome to PF!

Hi CostasDBD! Welcome to PF! :smile:

(have a pi: π and a theta: θ and an integral: ∫ :wink:)
CostasDBD said:
Using a trig substitution over pi/2 and pi/4, i get an answer of 36. it's just when i sketch it, i get a triangle which only has half that area. am i missing something obvious? cheers

Yup! :redface:

∫∫ x dxdy isn't the area! :wink:
 
Remember, the area of integration and the actual integration are 2 separate entities. Only when the function you're integrating over is f(x,y) = 1 is the integral equal to the area of your area of a double integration.
 
Thanks guys. funny what you pick up when you go back a few pages and have a quick read hey.
this forum is fantastic.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top