Coordinate transformation of lagrangian

nlake27
Messages
3
Reaction score
0
Hey all,
According to my physics textbook, if the potential energy of a particle is a homogeneous function of the spatial coordinate r, one can transform r by some factor a and t by some factor b=a^(1-.5k) such that the Lagrangian of the particle is multiplied by a^k. I understand all of this, but I do not understand how one gets from here to the result given: t'/t=(l'/l)^(1-k/2); t'/t being the ratio of the times along the paths l and l'.

My textbook has some problems that require (I assume) similar logic ("Find the ratio of the times in the same path for particles having the same mass but potential energies differing by a constant factor").
The book solution is t'/t=(U/U')^(1/2); I tried solving it by making the "constant factor" a^k so that l=a*l', which eventually gives me an answer that is off by a factor of 1/a. If someone could explain the logic that leads to the derivation of the equation in bold, I'm pretty sure I can find the error in my own calculations.
 
Physics news on Phys.org
Well, you've got two coordinate transformations r'=ar and t'=a^{(1-k/2)}t. Now suppose we let l and l' be the paths traversed by the particle in times t and t' respectively. Then the first equation yields a=l'/l which can be substituted into the second equation to give t'=\left(\frac{l'}{l}\right)^{(1-k/2)}t.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top