Cylinder rolling down an inclined plane

AI Thread Summary
The discussion revolves around calculating the acceleration of a hollow cylinder rolling down an inclined plane with a piece of plasticine attached to its inner circumference. The user seeks assistance in understanding the underlying concepts, particularly the moment of inertia and its dependence on the angular position of the plasticine. Key equations involve using Steiner's theorem to adjust the moment of inertia for the rolling motion and applying torque and force equations. The presence of friction complicates the calculations, necessitating a detailed mathematical approach. Overall, the user is looking for clarification and guidance on solving this physics problem effectively.
trisectedangl
Messages
3
Reaction score
0
This is an even-numbered problem in my textbook that I'm looking at early though it hasn't been taught by my lecturer yet, because I need to know the concepts underlying it for a similar problem. Cld someone help me?

Homework Statement



Consider the case of a hollow cylinder rolling down a plane inclined to the ground at an angle β. There is a small piece of plasticine stuck to a fixed position on the cylinder's inner circumference. What is the acceleration in this case?

Assume the small piece of plasticine to be a rigid cylinder of radius r and mass m, and the hollow cylinder to be of radius R and mass M.

Homework Equations



The formula for acceleration of hollow and filled cylinders

The Attempt at a Solution



Can't solve...


Help please?


Thanks!
 
Physics news on Phys.org
i'm not too sure but I'm throwing it out there.

(whenever i type "I" it's for moment of inertia, when talking about myself i'll use lower case i).
i assume you need first to find the moment of inertia through the center of the body, then use Steiner's equation to find I on the edge that is touching the incline.
The hardest part here is that I of the edge that is touching the incline changes according the where the plasticine is, so you would have to find I as a function of θ (angular position of the plasticine).
and θ is a function of how the body rolls.
if it's rolling without slipping you can do a moment equation on the edge of the body
Ʃτ=Iα
α=a/R
and maybe throw in a force equation or two, i think you should reach a good equation with θ and it's derivatives...
hope this helped.
 
Last edited:
Thanks. But i know these already.

By the way, there is friction, which has nonzero torque on the centre of the can.
 
Could you be more specific and show how you did the maths?

Sorry I'm so amateur-ish
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top