Orodruin said:
Yes, those are vectors, but they are the (coordinate) components of the resultant in the given coordinate system only.
Say I have vector ##\mathbf C## in a given 2D coordinate system specified by unit vectors ##\mathbf {\hat e}_1## and ##\mathbf {\hat e}_2.## In that system I write $$\mathbf C=C_1~\mathbf {\hat e}_1+C_2~\mathbf {\hat e}_2.$$In the above equation, ##C_1~\mathbf {\hat e}_1## and ##C_2~\mathbf {\hat e}_2## are the vector components of ##\mathbf C## whilst ##C_1## and ##C_2## are the scalar components of ##\mathbf C##. If I consider a rotation in the standard form that takes the unprimed vectors to primed vectors$$
\tilde R =\begin{pmatrix}
\cos\varphi & -\sin\varphi \\
\sin\varphi & \cos\varphi \\
\end{pmatrix},
$$ I get $$\mathbf C'=\tilde R~ \mathbf C=\tilde R (C_1~\mathbf {\hat e}_1)+\tilde R( C_2~\mathbf {\hat e}_2)
=C_1\tilde R~(\mathbf {\hat e}_1 )+C_2\tilde R~(\mathbf {\hat e}_2) =C_1\mathbf {\hat e}'_1+C_2\mathbf {\hat e}'_2.$$ The vector components of the rotated vector ##\mathbf C'## are the rotated vector components of the initial vector ##\mathbf C## whilst the scalar components are invariant. It's what one would expect.
Just to check $$\begin{align} & \tilde R (C_1~\mathbf {\hat e}_1)=
\begin{pmatrix}
\cos\varphi & -\sin\varphi \\
\sin\varphi & \cos\varphi \\
\end{pmatrix}
\begin{pmatrix} C_1 \\ 0 \end{pmatrix}=C_1\begin{pmatrix} \cos\varphi \\ \sin\varphi \end{pmatrix}\implies
|\tilde R (C_1~\mathbf {\hat e}_1)|=C_1
\nonumber \\
& \tilde R (C_2~\mathbf {\hat e}_2)=
\begin{pmatrix}
\cos\varphi & -\sin\varphi \\
\sin\varphi & \cos\varphi \\
\end{pmatrix}
\begin{pmatrix} 0 \\ C_2 \end{pmatrix}=C_2\begin{pmatrix} -\sin\varphi \\ \cos\varphi \end{pmatrix}
\implies
|\tilde R (C_2~\mathbf {\hat e}_2)|=C_2
.
\nonumber\end{align}$$ Yup, the magnitudes of the vector components of ##\mathbf C## are invariant under rotations.
I see no problem with all this. Did I miss your point?