Determing angular velocity after a collision

AI Thread Summary
The discussion centers on determining the angular velocity of a sphere after a collision with a moving particle in deep space. The sphere is constrained to move only in the direction of the incoming particle, complicating momentum conservation. Linear momentum is conserved, but energy and angular momentum may not be due to the constraints imposed on the sphere. Participants suggest focusing on the initial and final angular momentum of the particle to understand the transfer to the sphere. The conversation emphasizes the importance of applying constraints effectively to analyze the collision dynamics.
fluidistic
Gold Member
Messages
3,928
Reaction score
272

Homework Statement


Suppose we are in deep space and there's a particle of mass m and a sphere of radius R of mass M. Suppose also that the sphere is initially at rest while the particle is moving with a constant velocity v_0. The particle collide with the sphere in a position such that the point of collision on the sphere is situated at R/8 over the center of mass of the sphere. But there's a constraint : the sphere can only move in the direction of the coming particle before the impact. (For this, you can imagine an object making a resistance on the sphere if it tries to move in a direction which differs from the coming particle).
The particle leaves the sphere forming an angle of 60° with the sphere' surface.
Find the angular velocity of the sphere.
2. The attempt at a solution
I could easily find the velocity of the center of mass' sphere. I know that the linear momentum is conserved (in the direction of the particle before the impact), that the energy is likely not to be conserved and that the angular momentum is probably not conserved despite the fact that the collision is almost instantaneous. It's due to the fact that the sphere cannot move freely so that the object making a constraint suffers a great force in a small amount of time.
Hence I don't know how I can proceed. I don't want a clear solution but rather a tip about how I can start.
 
Physics news on Phys.org
I am not entirely sure of the constraint part, but angular momentum is always conserved the same as linear momentum. So my hint to you is to find the angular momentum of the particle initial and final and the difference is what the large ball should have, however THEN apply the constraints as you see fit. So certain aspects may be lost due to a loss of motion but the momentum was still transferred (or is not the equivalent of an angular impact occurred.)
 
Mthees08 said:
I am not entirely sure of the constraint part, but angular momentum is always conserved the same as linear momentum. So my hint to you is to find the angular momentum of the particle initial and final and the difference is what the large ball should have, however THEN apply the constraints as you see fit. So certain aspects may be lost due to a loss of motion but the momentum was still transferred (or is not the equivalent of an angular impact occurred.)

Thank you. Yeah you're right, I realized it some hours after having posted.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Back
Top