I Dirac's Gamma Matrices: What Are They & Do They Have Many Forms?

pallab
Messages
43
Reaction score
4
what are Dirac's gamma matrices
\{\gamma ^{0},\gamma ^{1},\gamma ^{2},\gamma ^{3}\}
. especially ,
\gamma ^{0}
does it have many forms?
 
Physics news on Phys.org
pallab said:
what are Dirac's gamma matrices
\{\gamma ^{0},\gamma ^{1},\gamma ^{2},\gamma ^{3}\}
. especially ,
\gamma ^{0}
does it have many forms?

There are some different ways to define them. The Dirac equation, in which a matrix with differential operators as its entries is acting on the spinor field, looks a bit different depending on the representation (assuming you write it explicitly in matrix-spinor form).
 
Michael Price said:
Of the choices, I find the Weyl or chiral basis the best one to use..

Generally speaking, the Weyl basis (in which ##\gamma^5## is diagonal) is most useful for studying relativistic particles, such as in high energy physics experiments, while the Dirac basis (in which ##\gamma^0## is diagonal) is most useful for studying non-relativistic particles. (Here "relativistic" and "non-relativistic" is relative to the lab frame in which the measuring equipment is assumed to be at rest.)
 
  • Like
Likes vanhees71 and Michael Price
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I asked a question related to a table levitating but I am going to try to be specific about my question after one of the forum mentors stated I should make my question more specific (although I'm still not sure why one couldn't have asked if a table levitating is possible according to physics). Specifically, I am interested in knowing how much justification we have for an extreme low probability thermal fluctuation that results in a "miraculous" event compared to, say, a dice roll. Does a...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Back
Top