Eigenstates of a free electron in a uniform magnetic field

Zhuangzi
Messages
1
Reaction score
0
Homework Statement
Consider the (non-relativistic) Hamiltonian of a particle of charge -e in the presence of an external magnetic field B=B_0*ẑ, in the symmetric gauge A=(1/2)B x r.

a) Explicitly write the Hamiltonian described and show that p_z is a constant of motion.
b) Using your reasoning from (a), show that the problem admits a separation of variables with eigenfunctions of the form ψ(r)=exp(i*k_z*z)φ(x,y).
Relevant Equations
H = (1/2m)(p-qA)^2 + qV
L_z = -iħ(x∂_y - y∂_x)
B=B_0*ẑ
A=(1/2)B x r
ψ(r)=exp(i*k_z*z)φ(x,y)
I started with the first of the relevant equations, replacing the p with the operator -iħand expanding the squared term to yield:

H = (-ħ^2 / 2m)^2 + (iqħ/m)A·∇ + (q^2 / 2m)A^2 + qV

But since A = (1/2)B x r

(iqħ/m)A·∇ = (iqħ / 2m)(r x )·B = -(q / 2m)L·B = -(qB_0 / 2m)L_z

and A^2 = (1/4)(r^2*B^2 - (r·B)^2) = (B_0^2 / 4)(x^2 + y^2)

and V = 0

which gives a total Hamiltonian of

H = (-ħ^2 / 2m)^2 + (eB_0 / 2m) L_z + (e^2*B_0^2 / 8m)(x^2 + y^2).

At this point, however, I get stuck. I tried plugging in the wavefunction suggested in the problem, but I couldn't get an eigenvalue to pop out (I've attached a picture of my work). I want to know if I've made a mistake in calculating the Hamiltonian or in applying it to the wavefunction.
 

Attachments

  • quantum.jpeg
    quantum.jpeg
    56.1 KB · Views: 322
Physics news on Phys.org
The idea is to assume a solution of the form ##\psi(x,y,z) = \phi(x,y)Z(z)##, substitute it into the Schrödinger equation, and show it separates into a differential equation for ##\phi## and one for ##Z##.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top