Electric field of a washer (hollow disk)

AI Thread Summary
The discussion revolves around calculating the electric field of a hollow disk (washer) with uniform surface charge density. The participants explore the integration needed to find the electric field at a distance along the z-axis and discuss the implications of letting the inner radius approach zero, effectively turning the washer into a charged disk. Confusion arises regarding the integration limits and the correct application of formulas, particularly in distinguishing between the variables used for integration and the physical parameters of the problem. Participants suggest methods to simplify the calculations and clarify the relationships between the variables involved. Overall, the conversation emphasizes the importance of correctly setting up the integration to derive the electric field expression accurately.
Anne Armstrong
Messages
11
Reaction score
1

Homework Statement


A washer made of nonconducting material lies in the x − y plane, with the center at the coordinate origin. The washer has an inner radius a and an outer radius b (so it looks like a disk of radius b with a concentric circular cut-out of radius a). The surface of the washer is uniformly charged with a surface charge density σ.

(a) What is the electric field (as a vector) at a distance z along the z-axis (which coincides with the axis of symmetry of the ring)? [Note: this part requires integration.]

b) What happens when you let a → 0? (This corresponds to a charged disk of radius b.)

(c) What happens to the answer from part (b) when you let z become very large, i.e., when z>> b? How does this compare to the electric field of a single charge q = πb2σ at a distance r = z? [Note: in this part, you may find the following approximation useful: (1 + x) α ≈ 1 + αx, where x is very small (i.e., x <<1) and α is a real number. (This formula comes from a Taylor expansion, after ignoring terms of order x 2 and higher.) This kind of tool is employed in problems where you have two expressions which nearly cancel, and are trying to tease out the leftover. ]

Homework Equations


E = kq/r2
σ = charge/unit volume
Φ = ∫E dA = QenclosedO

The Attempt at a Solution


[/B]
(a.) Conceptually, I think the E-field would become larger as z → 0 and smaller as z gets larger. Stategically, my strategy here is to find the E-field of a positively-charged disk with radius b and then, from that, subtract a smaller negatively-charged disk with radius a.

So I started by trying to solve for the E-field of the disk with radius b for a point at a distance of z along the z-axis:
σ = Q/Volume so Q = σVolume
Volume: area x height → 2πb x db where db is an infinitesimally small length
dQ = σ2πbdb
Plug dQ into E = kq/r2 for q, where r here equals √(z2 + b2) (found using Pyth. theorem for the right triangle made between the origin, point Z, and radius b):
dEz = kzσ2πbdb/(z2 + b2)(3/2)
Ez = kzσ2π ∫ b/(z2 + b2)(3/2) db
Ez = kzσ2π [-1/√(z2 + b2)] from 0 to b → Ez = kzσ2π [(-1/√z2) + (-1/√(z2 + b2))

At this point I get confused. I feel like I'm missing something here and I don't know what it is–I'm totally lost. Any help would be appreciated!

(b.), (c.) As a→0, the E-field should become larger as z approaches 0, because it should be proportional to the distance away from the washer, and vice versa (c.).
 
Physics news on Phys.org
Anne Armstrong said:
my strategy here is to find the E-field of a positively-charged disk with radius b and then, from that, subtract a smaller negatively-charged disk with radius a.
You can use another strategy here. Think of the washer being made of infinite no of rings of infinitesimal width dr, from a to b.
You can directly use the formula for E-field along the axis of a ring and then simply integrate it between a to b to get the total electric field due to the washer.
This way, you can also see what happens to the field when a=0.
 
  • Like
Likes SammyS
Ok so if I use E = k ∫(σ/b²) dA (from kq/r2 and Guass' Law using r=b) where dA=dθdb and θ is the angle between the point z and a point along radius a, I can differentiate it from a →b and from θ=0→360°. Is that what you mean?
 
Anne Armstrong said:
→ Ez = kzσ2π [(-1/√z2) + (-1/√(z2+ b2))
You have a sign error.
Why are you taking a=0 here? Why not get the general expression as a function of a and b, then worry about the limits?
Anne Armstrong said:
Ok so if I use E = k ∫(σ/b²) dA (from kq/r2 and Guass' Law using r=b) where dA=dθdb and θ is the angle between the point z and a point along radius a, I can differentiate it from a →b and from θ=0→360°. Is that what you mean?
Seems to me that cnh1995 is describing the method you used in the first place. Stick with it.
It was perhaps confusing that you used b as both the integration variable and the upper limit, but it's not unusual.
 
haruspex said:
You have a sign error.
Why are you taking a=0 here? Why not get the general expression as a function of a and b, then worry about the limits?

I was attempting to get the E field of a disc with radius b--aka integrating from radius of 0 to b, but I don't think that's right. I'm confused by what you mean by "the general expression as a function of a and b." I don't understand how I can get a and b in the same equation...
From the E = k ∫(σ/r²) dA equation (I'm going to switch out b for r here to simplify...) I got E = k ∫(σ/r²) dθdr (integrating from a to b as cnh1995 suggested) ⇒ kσ ∫ (1/r²)dr
At this point I get lost again! I was trying to get an expression that replaces r with a and b, but I'm not sure how to get there.
 
Anne Armstrong said:
I don't understand how I can get a and b in the same equation...
It's a matter of choosing the limits.
Anne Armstrong said:
I got E = k ∫(σ/r²) dθdr
You seem to be using r in two different ways. Inside the integrand it is the distance from the ring element to (0,0,z), but in dθdr it is a radius from the centre of the disc.
I suggest sticking to r as a radius, replacing your variable b. Keep b as the max radius only. What is the range for r?
 
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top