MexChemE
- 237
- 54
Homework Statement
Find ΔH for the isothermal expansion of one mole of CO2 from a pressure of 1 atm to zero at 300 K. The critical point of CO2 is TC = 31 °C and PC = 73 atm. Use the equation for ΔH you previously derived from the Berthelot equation of state. (Answer provided by textbook: ΔH = -10.2 cal)
Homework Equations
ΔH for isothermal processes of real gases, derived in a previous problem from the Berthelot EOS:
\Delta H = \left( An + \frac{3Bn}{T^2} \right) \Delta P
A = \frac{9RT_C}{128P_C}
B = -\frac{27RT_C^3}{64P_C}
The Attempt at a Solution
Calculating A and B from provided data and using R = 0.08205 L atm mol-1 K-1.
A = 0.02404 L mol-1
B = -13341.448 L K2 mol-1
If we got from 1 atm to zero, then ΔP = -1 atm. Plugging all these values into the ΔH equation gives:
\Delta H = \left( \left(0.02404 \ \frac{L}{mol} \right)(1 \ mol) + \frac{(3)(-13341.448 \ \frac{L \cdot K^2}{mol})(1 \ mol)}{(300 K)^2} \right) (-1 \ atm) = 0.4207 \ L \cdot atm
\Delta H = 0.4207 \ L \cdot atm \ \left(\frac{24.22 \ cal}{1 \ L \cdot atm} \right) = 10.19 \ cal
As you can see, my answer is numerically correct, but positive instead of negative as in the textbook. I've checked every part of the problem and found no error, so I don't know what should I change to get the negative value. Is my ΔP correct? I don't think the minus sign in the answer is a typo, since my intuiton is telling me the system should have a net decrease in energy (as it theoretically ended up having zero pressure), so I must be the one making a mistake. Any insight will be greatly appreciated, thanks in advance!