- #1
- 8
- 0
Homework Statement
Two isolated containers, of volumes V1 and V2, enclose ideal single atom gas at the same pressure p. The number of particles in each container is equal, the temperature of gas in container one is T1=293K and the temperature of gas in container two is T2=308K. An equilibrium is acheived by connecting the two containers. Calculate the entropy of the system if each container initially contained 100 mol of gas.
Homework Equations
dQ=dE+dW
dS=dQ/T
dE=3/2 nRdT
pV=nRT
The Attempt at a Solution
Basically, I've solved the problem, with the result of (delta)S=1153.77 J/K. Mathematically speaking, it checks out, but I doubt, along with a few of my colleagues, that the result is much too great. I've also searched the wikipedia for the order of magintudes which shows that the standard entropy of 1 mole of graphite is 5.74 J/K. This means that, for 200 moles of the gas, the result should be more or less accurate.
I'd greatly appreciate if anyone could double check this. Thank you :)
Last edited: