Gabriel Maia
- 70
- 1
Hi. I'm trying to prove that
[\Omega] = \int dq \int dp \, \rho_{w}(q,p)\,\Omega_{w}(q,p)
where
\rho_{w}(q,p) = \frac{1}{2\pi\hbar} \int dy \, \langle q-\frac{y}{2}|\rho|q+\frac{y}{2}\rangle\,\exp(i\frac{py}{\hbar})
is the Wigner function, being \rho a density matrix. On the other hand
\Omega_{w}(q,p) = \frac{1}{2\pi\hbar} \int dy \, \langle q-\frac{y}{2}|\Omega|q+\frac{y}{2}\rangle\,\exp(i\frac{py}{\hbar})
is the Wigner representation of the operator I'm interested in. The expectation value of an operator can be calculated from
[\Omega] = Tr(\rho\Omega) = \int dp \, \langle p|\rho\Omega|p\rangle
= \int dp^{\prime} \int dp \, \langle p|\rho|p^{\prime}\rangle\langle p^{\prime}|\Omega|p\rangle
Now, the matrix elements \langle p | \rho | p^{\prime} \rangle \,\,\, \mathrm{and} \,\,\, \langle p | \Omega| p^{\prime} \rangle
Should lead to the Wigner function and the Wigner representation of the operator but they only do so if
p=p^{\prime}
Do you know how can I solve this?
Thank you.
[\Omega] = \int dq \int dp \, \rho_{w}(q,p)\,\Omega_{w}(q,p)
where
\rho_{w}(q,p) = \frac{1}{2\pi\hbar} \int dy \, \langle q-\frac{y}{2}|\rho|q+\frac{y}{2}\rangle\,\exp(i\frac{py}{\hbar})
is the Wigner function, being \rho a density matrix. On the other hand
\Omega_{w}(q,p) = \frac{1}{2\pi\hbar} \int dy \, \langle q-\frac{y}{2}|\Omega|q+\frac{y}{2}\rangle\,\exp(i\frac{py}{\hbar})
is the Wigner representation of the operator I'm interested in. The expectation value of an operator can be calculated from
[\Omega] = Tr(\rho\Omega) = \int dp \, \langle p|\rho\Omega|p\rangle
= \int dp^{\prime} \int dp \, \langle p|\rho|p^{\prime}\rangle\langle p^{\prime}|\Omega|p\rangle
Now, the matrix elements \langle p | \rho | p^{\prime} \rangle \,\,\, \mathrm{and} \,\,\, \langle p | \Omega| p^{\prime} \rangle
Should lead to the Wigner function and the Wigner representation of the operator but they only do so if
p=p^{\prime}
Do you know how can I solve this?
Thank you.