Fermion Pressure at Room Temperature

FranciscoSili
Messages
8
Reaction score
0

Homework Statement


I have to find the mean Energy $<E>$ and pressure of a system of N fermions with spin 1/2. The energy per particle is
\begin{equation}
\varepsilon = \frac{p^2}{2m}.
\endu{equation}

Homework Equations


The relevant equations are the degeneracy of the system:
\begin{equation}
g(\varepsilon)=\frac{4V (2m)^{3/2}\pi\varepsilon^{1/2}}{h^3}
\end{equation}
the mean occupation numbers of fermions
\begin{equation}
<n_\varepsilon>_{FD} = \frac{1}{e^{\beta(\varepsilon - \mu)}+1}
\end{equation}

The Attempt at a Solution


I calculated the mean energy doing
\begin{equation*}
\begin{split}
<E> &= \int_{0}^{\infty} \varepsilon g(\varepsilon) <n_\varepsilon>_{FD} d\varepsilon\\
&= \frac{4V (2mkT)^{3/2}\pi}{h^3} kT \int_{0}^{\infty} \frac{x^{3/2}}{z^{-1}e^x+1}dx.
\end{split}
\end{equation*},
and finally obtained:
\begin{equation}
<E> = \frac{V}{\lambda^3} kT \sum_{l=1}^{\infty} (-1)^{l+1}\frac{z^l}{l^{5/2}}
\end{equation}
where z is the fugacity.
\begin{equation*}
z=\exp{\beta \mu}
\end{equation*}Then I calculated the pressure making use of the grand partition function
\begin{equation}
\mathcal{Z} = \prod_\varepsilon 1+e^{-\beta(\varepsilon - \mu)}
\end{equation}
and doing this
\begin{equation*}
\begin{split}
\frac{PV}{kT} &= \ln \mathcal{Z} = \sum_{\varepsilon} \ln \left(1+e^{-\beta(\varepsilon - \mu)}\right)\\
&= \frac{4V (2m)^{3/2}\pi}{h^3} \int_{0}^{\infty} \varepsilon^{1/2} \ln \left(1+e^{-\beta(\varepsilon - \mu)}\right) d\varepsilon\\
&= \frac{4V (2m)^{3/2}\pi}{h^3} \left[\frac{2}{3} \varepsilon^{3/2} \ln \left(1+e^{-\beta(\varepsilon - \mu)}\right)\Big|_0^{\infty} - \frac{2\beta}{3} \int_{0}^{\infty} \frac{\varepsilon^{3/2}}{e^{\beta(\varepsilon - \mu)}+1} d\varepsilon \right]\\
&= \frac{8V (2m)^{3/2}\pi}{3h^3} \beta \int_{0}^{\infty} \frac{\varepsilon^{3/2}}{e^{\beta(\varepsilon - \mu)}+1} d\varepsilon
\end{split}
\end{equation*}
I finally obtained that the pressure is
\begin{equation}
P = \frac{2}{3} \frac{1}{\lambda^3} kT \sum_{l=1}^{\infty} (-1)^{l+1}\frac{z^l}{l^{5/2}}
\end{equation}
Now, the problem is that, if I want to obtain the pressure at room temperature, I calculate using the canonical ensemble the chemical potential, and approximate the series
\begin{equation}
\mu = \frac{1}{\beta} \ln \left(\frac{N \lambda^3}{V}\right),
\end{equation}
\begin{equation}
\sum_{l=1}^{\infty} (-1)^{l+1}\frac{z^l}{l^{5/2}} \approx z
\end{equation}
I get that the pressure is:
\begin{equation}
P = \frac {2} {3} \frac{NkT}{V}
\end{equation}
That result really bothers me because of that factor of 2/3. I did the same process to obtain the pressure and energy for bosons and obtained the correct result.
I thought that the factor may arise because I am considering electrons and the spin may do a contibution.

If anyone could help me with this it would be very appreciated!
Thank you
 
Physics news on Phys.org
stevendaryl said:
They go through the calculation in this paper:

https://www.phas.ubc.ca/~berciu/TEACHING/PHYS455/LECTURES/FILES/fermionsn.pdf

They get ##PV = \frac{2}{3} U##, not ##PV = \frac{2}{3} kT## (where ##U## is the energy).
I found my mistake. I was assuming that
\begin{equation*}
\Gamma(5/2)=\frac{\pi^{1/2}{4}
\end{equation*}
when it actually is:
\begin{equation*}
\Gamma(5/2)=\frac{3\pi^{1/2}{4}.
\end{equation*}
Then everything was correct.
Thank you for your response, and I'm going to keep that paper. It's really interesting.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top