Finding distance traveled up a ramp given m, angle, and velocity

AI Thread Summary
A block with a mass of 18.4 kg slides down a ramp at a 43.5-degree angle with constant velocity, indicating zero net acceleration. The coefficient of kinetic friction was initially calculated as 0.948, but later revised to 0.83. To determine how far the block travels up the ramp after being projected with an initial velocity of 1.55 m/s, the correct approach involves using kinematic equations that do not require time. The acceleration while moving up the ramp must account for friction acting against the motion. The discussion emphasizes the importance of correctly applying forces and friction in the calculations to find the stopping distance.
emilea
Messages
2
Reaction score
0

Homework Statement


A block with mass m=18.4 kg slides down a ramp of slope angled 43.5 deg with a constant velocity. It is then projected up the plane with a Vo=1.55 m/s. How far does it go before stipping?


Homework Equations


Fnet=ma
Fg + Ff=Fnet
Ff=uk(Fn)
Fn=mgcos(theta)
a=(uk)cos(theta) + gsin(theta)


The Attempt at a Solution


I drew a free body diagram to solve for the coefficient of friction down the ramp, which was uk=0.948. I then used that to find the acceleration down the ramp using the a=(uk)cos(theta) + gsin(theta), which was 7.45. Here is where I got stuck. I think I could use deltax=Vo(t) + (1/2)a(t)^2, but I don't know if the downward acceleration would still be applicable or how to find the time. The equation I was thinking of using is t=x/(Vocostheta)), but I don't know x or t. could I combine that equation with x=Vo(t) + 1/2a(t^2)? Am I even on the right track?
 
Physics news on Phys.org
emilea said:
I drew a free body diagram to solve for the coefficient of friction down the ramp, which was uk=0.948. I then used that to find the acceleration down the ramp using the a=(uk)cos(theta) + gsin(theta), which was 7.45.
If the block slides down the incline at constant velocity, the acceleration must be ... ? Drawing a free body diagram is the way to go. If you still cannot finish the problem, please post the details of what you did so that we can correct anything that might be wrong.
 
I figured out that the downward acceleration is zero becausen it is at a constant velocity, which means the net downward force is also zero. I recalculated uk as 0.83 by setting Fg + Ff=0. My problem now is I have no idea how to connect this to any equations I could use to solve for x. I tried just using an equation for stopping distance: d=(Vo^2)/2ug, but that didn't work.
 
I think your initial coefficient of kinetic friction (0.948) is the correct one. I questioned your statement that the acceleration down is not zero. Now you need to find the acceleration of the block when is is sliding up the incline. You already have an expression for that, a=(uk)cos(theta) + gsin(theta) in a direction down the incline. To find how far up the incline the block goes before it stops, use the kinematic equation that involves speed and displacement, but not time.
 
\mu_k=0.948 is what I get.

If I'm understanding you correctly, emilea, I believe the expression you've posted for the acceleration down the plane [a=(uk)cos(theta) + gsin(theta)] is incorrect. Keep in mind that friction wants to act opposite the direction of motion.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...

Similar threads

Replies
56
Views
4K
Replies
4
Views
2K
Replies
11
Views
3K
Replies
8
Views
3K
Replies
1
Views
2K
Replies
2
Views
2K
Replies
7
Views
1K
Replies
5
Views
2K
Back
Top