Finding the change in pressure and entropy of a quasistatic adiabatic process

rg2004
Messages
22
Reaction score
0

Homework Statement


Suppose that one mole of an ideal gas expands in a quasi-static adiabatic process from P1 = 1 Pa and V1 = 1m3 to V2 = 8m3. What is the change in the pressure and the entropy of the gas?


Homework Equations



PV\gamma=constant

The Attempt at a Solution


I can't come up with a second equation that doesn't introduce another unknown. I've been working on thermodynamics for the past two days almost non-stop and I'm drained. Any help would be nice. thanks.
 
Physics news on Phys.org
perhaps I am supposed to assume that the gas is monoatomic? My textbook is vague and its not clear to me whether all ideal gasses are considered monoatomic.

this is what i found:

\gamma= 5/3 (ideal monatomic gas).
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top