Ocasta
- 40
- 0
I want to apologize ahead of time for my apparent inability to get LaTeX to display properly.
λ = 3.8 x 10^(-6) C/m
R = 32m
r = magnitude of the hypotenuse (the book's convention, a poor choice IMHO)
r = \sqrt{R^2 + x^2}
k = 8.988 x 10^9
P:(0,-32)
cosθ = x/r
a→∞
dE = λk \int_0^a \frac{dx}{r^2}
We're supposed to figure out the overall field strength, which is finite.
dE = λk \int_0^a \frac{dx}{r^2}
dE_x = λk \int_0^a \frac{dx}{r^2} cosθ
dE_x = λk \int_0^a \frac{dx}{r^2} \frac{x}{r}
<br /> dE_x = λk \int_0^a \frac{xdx}{r^3}<br />
<br /> u = R^2 + x^2 → \frac{du}{2} = xdx<br />
<br /> dE_x = λk \int_0^a (u)^{-3/2} du<br />
<br /> dE_x = λk [ -2 u^{-1/2} ]_0^a<br />
<br /> dE_x = -2λk [ (R^2 + x^2)^{-1/2} ]_0^a<br />
<br /> dE_x = -2λk [ \frac{1}{\sqrt{R^2 + x^2}} ]_0^a<br />
<br /> dE_x = -2λk [ \frac{1}{\sqrt{R^2 + \inf^2}} - \frac{1}{\sqrt{R^2}} ]<br />
<br /> dE_x = -2λk [ 0 - \frac{1}{\sqrt{R^2}} ]<br />
<br /> dE_x = -2λk [ \frac{1}{R} ]<br /><br /> dE_x ≈ -2.13465 x 10^3<br />
Homework Statement
λ = 3.8 x 10^(-6) C/m
R = 32m
r = magnitude of the hypotenuse (the book's convention, a poor choice IMHO)
r = \sqrt{R^2 + x^2}
k = 8.988 x 10^9
P:(0,-32)
cosθ = x/r
a→∞
Homework Equations
dE = λk \int_0^a \frac{dx}{r^2}
The Attempt at a Solution
We're supposed to figure out the overall field strength, which is finite.
dE = λk \int_0^a \frac{dx}{r^2}
dE_x = λk \int_0^a \frac{dx}{r^2} cosθ
dE_x = λk \int_0^a \frac{dx}{r^2} \frac{x}{r}
<br /> dE_x = λk \int_0^a \frac{xdx}{r^3}<br />
<br /> u = R^2 + x^2 → \frac{du}{2} = xdx<br />
<br /> dE_x = λk \int_0^a (u)^{-3/2} du<br />
<br /> dE_x = λk [ -2 u^{-1/2} ]_0^a<br />
<br /> dE_x = -2λk [ (R^2 + x^2)^{-1/2} ]_0^a<br />
<br /> dE_x = -2λk [ \frac{1}{\sqrt{R^2 + x^2}} ]_0^a<br />
<br /> dE_x = -2λk [ \frac{1}{\sqrt{R^2 + \inf^2}} - \frac{1}{\sqrt{R^2}} ]<br />
<br /> dE_x = -2λk [ 0 - \frac{1}{\sqrt{R^2}} ]<br />
<br /> dE_x = -2λk [ \frac{1}{R} ]<br /><br /> dE_x ≈ -2.13465 x 10^3<br />
Last edited: