- #1

- 3

- 1

- Summary:
- How can I find out how long the air in a pressurised container (known pressure, volume, temperature and size of hole) will take to leave, assuming it is opened under atmospheric pressure?

I am working on a project where I have to calculate various results relating to the motion of a water bottle rocket being launched. I am currently stuck on trying to find how long the thrust period of the rocket is. The model for the rocket is as follows: It is a 2L (0.002m

Using this information, is it possible to determine the time that it will take for the pressure in the bottle to reach equilibrium? I am assuming it will follow a somewhat inverse exponential model, where the pressure will never truly reach equilibrium, but will get exceptionally close at a certain time (similar to time constants in a capacitor).

Feel free to ask for additional information.

Thanks.

^{3}bottle filled with air at a pressure of 7 Bar, one third of the bottle is to be filled with water, however for simplicity's sake I am willing to assume that the volume of the air in the bottle is a constant 2L, and that the temperature remains constant (room temp. 293K). I also know that the area of the hole in the bottle is about 3×10^{-4}m^{2}.Using this information, is it possible to determine the time that it will take for the pressure in the bottle to reach equilibrium? I am assuming it will follow a somewhat inverse exponential model, where the pressure will never truly reach equilibrium, but will get exceptionally close at a certain time (similar to time constants in a capacitor).

Feel free to ask for additional information.

Thanks.