Freebody Diagram for Crate Lifted with Steel Cable at Decreasing Speed

  • Thread starter Thread starter homevolend
  • Start date Start date
  • Tags Tags
    Diagram
AI Thread Summary
In the discussion about drawing a free body diagram for a crate being lifted by a steel cable at decreasing speed, participants clarify the correct labeling of forces. The tension force (FT) is emphasized as the primary force acting on the crate, while horizontal forces are deemed unnecessary since the motion is vertical. It is noted that the applied force in this scenario is represented by the tension force alone. Additionally, the distinction between action-at-a-distance forces and contact forces is highlighted for better understanding of free body diagrams. Proper labeling and understanding of these forces are crucial for accurately representing the situation.
homevolend
Messages
47
Reaction score
0

Homework Statement



A crate is being lifted by a steel cable at a decreasing speeed. Label everything in the diagram.


The Attempt at a Solution




[PLAIN]http://img163.imageshack.us/img163/5764/drawk.png

This is what I did but it is wrong, how would I draw it to show the decreasing speed and also the lifted part?
 
Last edited by a moderator:
Physics news on Phys.org
the crate (the lifted part) is being lifted up...there's nothing going on in the horizontal direction, so those horizontal forces don't belong there. The vertical ones are OK, although usually the force you have labeled FN is usually called FT or just T, because it is a tension force pulling away from the crate. That's all you need to do in a free body diagram. Taking into account the decreasing speed would be asked for as a 'part b' question.
 
Ok thanks, I understand. Since there is no labeled horizontal forces I don't need the Fa and Ff.

But since its being lifted isn't there an Fa or is it just FT.
 
homevolend said:
Ok thanks, I understand. Since there is no labeled horizontal forces I don't need the Fa and Ff.

But since its being lifted isn't there an Fa or is it just FT.
That is right, the applied force is the tension force, in this problem. Don't put in 2 forces at the top, just the one. Here's a tip...when you draw free body diagrams, you note and label the forces acting on the object, and their direction. There are basically 2 general types of forces : action at a distance forces (like gravity forces (weight) or magnetic forces); and so called 'contact' forces, where there has to be contact with the object in order for there to be a force. Contact forces include friction forces, tension forces, spring forces, normal forces, applied pushing or pulling forces, etc.
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top