General Chemistry - Heat, Work, Enthelpy, Entropy Question

AI Thread Summary
The discussion revolves around the condensation of one mole of H2O(g) to H2O(l) at 1.00 atm and 95°C, with a focus on understanding the thermodynamic implications rather than calculating specific values. The user expresses confusion regarding the condensation temperature, noting that it typically occurs at 100°C at 1 atm, yet the process is considered to happen at 95°C. They initially assumed that since the temperature remains constant during the phase change, the change in internal energy (ΔE) would be zero, leading to the conclusion that heat (q) equals negative work (w). However, they seek clarification on why this assumption is incorrect, emphasizing their desire for a conceptual understanding rather than numerical solutions. The discussion highlights the complexities of thermodynamic principles in phase changes.
modx07
Messages
2
Reaction score
0
1. Assume that one mole of H2O(g) condenses to H2O(l) at 1.00atm and 95 Celcius. Calculate q, w, ΔH, ΔS of the system, ΔS of surroundings. BUT I AM NOT ASKING HOW TO CALCULATE THESE VALUES, SEE LAST SENTENCE OF POST.

Homework Equations


q = nCΔT
ΔH = n(Cp)ΔT
W = -PΔV
ΔS = [q_reversible] / T

Cp of H2O(l) = 75.3 J / K*mol
Cp of H2O(g) = 36.4 J / K*mol
ΔH-vaporization of H2O @ 100 = 40.7 kJ / K*mol

The Attempt at a Solution



Basically, I have the solution but I don't understand why it's the case. When I asked my TA, he said that the condensation is actually occurring at 95 Celcius, which confused me right off the bat since I knew that at 1atm, the condensation point should be 100 degrees.

Regardless, I thought that the step that was occurring should be simply:

H2O (g) -> H2O (l) @ 95 degrees.

Thus, I thought that since the system stays at the same temperature, then ΔE = 0 and that q = -w. However, this assumption is wrong. I am simply asking why this is wrong (and not to calculate the values).
 
Physics news on Phys.org
Take this a point of discuss and not a solution, because I'm learning the same thing as we speak.

Since

ΔE = qv + w = nCvΔT + (-PextΔV)

and there is no change in volume, isn't it true that

ΔE = qv = nCvΔT

?
 
Thread 'Confusion regarding a chemical kinetics problem'
TL;DR Summary: cannot find out error in solution proposed. [![question with rate laws][1]][1] Now the rate law for the reaction (i.e reaction rate) can be written as: $$ R= k[N_2O_5] $$ my main question is, WHAT is this reaction equal to? what I mean here is, whether $$k[N_2O_5]= -d[N_2O_5]/dt$$ or is it $$k[N_2O_5]= -1/2 \frac{d}{dt} [N_2O_5] $$ ? The latter seems to be more apt, as the reaction rate must be -1/2 (disappearance rate of N2O5), which adheres to the stoichiometry of the...
I don't get how to argue it. i can prove: evolution is the ability to adapt, whether it's progression or regression from some point of view, so if evolution is not constant then animal generations couldn`t stay alive for a big amount of time because when climate is changing this generations die. but they dont. so evolution is constant. but its not an argument, right? how to fing arguments when i only prove it.. analytically, i guess it called that (this is indirectly related to biology, im...
Back
Top