Graphing Vector Fields: How to Determine Grid Size and Plot Vectors?

AI Thread Summary
To graph vector fields effectively, start by determining a finite region of interest in the coordinate plane, such as from 0 to 10 in both x and y. Set up a grid within this region, typically using a 1x1 grid, and plot vectors at each intersection point. Calculate the vector field value F(x,y) at each point and draw the corresponding vector with its tail at that point. Adjust the grid size based on the magnitude of the vectors; if vectors are too dense or sparse, modify the grid spacing accordingly. This method allows for a clear visualization of the vector field without overwhelming clutter.
LinearAlgebra
Messages
22
Reaction score
0
What are the general rules that one should use in graphing vector fields. I'm having a lot of trouble doing this and don't really know where to start.

If you take F(x,y) = -yi + xj

What should be the next step in terms of graphing? They have it drawn in our book as a bunch of vectors that form a bunch of cirles within each other...
 
Mathematics news on Phys.org
Choose some point (x,y), Caculate the vector F(x,y)= -yi+ xi, draw that vector starting at (x,y) (with its "tail" at (x,y)).

Choose another point (x,y), Repeat.

That's all there is to it.
 
I know, its a stupid question. I just don't understand how to choose the points. The book has the points (1,0) (0,1) (-1,0) (0,-1) etc...how did they get this?
 
You can't plot the field for every point because all you would see is black (assuming the vectors are in black). Therefore, you want to sample the space, usually on a grid. Coarsen the grid if you see so much black that you can't see the vectors, and refine the grid if the vectors are so widely spaced that you can't visualize the field.
 
Okay, I'm sorry, i still just don't get it. Can someone just explain this step by step in terms of what i should be thinking or plotting?
 
You want to view a vector field over a finite-sized region of \mathbb R^2. The first thing to do is to determine this region of interest. I will assume (just for illustration) that you want to look at the vector field from 0 to 10 in x and y. The next thing to do is to set up a grid on this interval. For example, a 1x1 grid. You will draw a vector at each grid intersection point. (In this example, this means 121 vectors.) For each grid intersection point (x,y), determine the vector field value F(x,y), and plot that vector with tail at (x,y).

You can do a bit better than just guessing how finely to make the grid. You will have a hard time seeing the field if the vectors cross multiple grid lines or if the vectors are a lot smaller than the space between grid lines. As a first guess, make the grid spacing about equal to the magnitude of the largest vector. Then fine-tune so it looks good.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top