vela
Staff Emeritus
Science Advisor
Homework Helper
- 16,203
- 2,854
Good! You still have a few typos, and it would have been easier to rewrite the lefthand side in terms of ##\xi## to get
$$\sqrt{\frac{8}{15}} \sqrt[4]{\frac{m\omega}{\hbar\pi}} \, \xi^3 e^{-\xi^2/2} = \sqrt[4]{\frac{m\omega}{\hbar\pi}} \, e^{-\xi^2/2} \left[a_0 + \frac{1}{\sqrt{2}} a_1 (2\xi) + \frac{1}{\sqrt{8}} a_2 (4\xi^2-2) + \frac{1}{\sqrt{48}} a_3 (8\xi^3-12\xi)\right]$$ or, equivalently,
$$\sqrt{\frac{8}{15}} \, \xi^3 = a_0 + \frac{1}{\sqrt{2}} a_1 (2\xi) + \frac{1}{\sqrt{8}} a_2 (4\xi^2-2) + \frac{1}{\sqrt{48}} a_3 (8\xi^3-12\xi).$$ Can you take it from there?
$$\sqrt{\frac{8}{15}} \sqrt[4]{\frac{m\omega}{\hbar\pi}} \, \xi^3 e^{-\xi^2/2} = \sqrt[4]{\frac{m\omega}{\hbar\pi}} \, e^{-\xi^2/2} \left[a_0 + \frac{1}{\sqrt{2}} a_1 (2\xi) + \frac{1}{\sqrt{8}} a_2 (4\xi^2-2) + \frac{1}{\sqrt{48}} a_3 (8\xi^3-12\xi)\right]$$ or, equivalently,
$$\sqrt{\frac{8}{15}} \, \xi^3 = a_0 + \frac{1}{\sqrt{2}} a_1 (2\xi) + \frac{1}{\sqrt{8}} a_2 (4\xi^2-2) + \frac{1}{\sqrt{48}} a_3 (8\xi^3-12\xi).$$ Can you take it from there?