bard
- 65
- 0
I need help proving this hyperbolic function
Prove that
\tan^{-1}\hbar {x}=\frac{1}{2}\ln\frac{1+x}{1-x}
my work
x=e^y-e^-y/e^y+e^-y
(e^y+e^-y)x=e^y-e^-y
0=e^y-e^-y-xe^y+xe^-y
e^y(e^y-e^-y-xe^y+xe^-y)
e^2y-x(e^2y)-1+x=0
I know i have to use the quadratic equation here
Prove that
\tan^{-1}\hbar {x}=\frac{1}{2}\ln\frac{1+x}{1-x}
my work
x=e^y-e^-y/e^y+e^-y
(e^y+e^-y)x=e^y-e^-y
0=e^y-e^-y-xe^y+xe^-y
e^y(e^y-e^-y-xe^y+xe^-y)
e^2y-x(e^2y)-1+x=0
I know i have to use the quadratic equation here
Last edited: