How Does Changing Current in an Outer Loop Induce Current in an Inner Loop?

Snazzy
Messages
470
Reaction score
0

Homework Statement


A small 2.0-mm-diameter circular loop with R = 0.020 Ohms is at the center of a large 100-mm-diameter circular loop. Both loops lie in the same plane. The current in the outer loop changes from +1.0 A to -1.0 A in 0.10 s. What is the induced current in the inner loop?



Homework Equations


\epsilon = \frac{\delta \Phi}{\delta t}



The Attempt at a Solution



I'm not sure how to relate \frac{\delta I}{\delta t} to Lenz's Law. Just a hint would be great.
 
Last edited:
Physics news on Phys.org
For there to be an induced emf in the inner loop, there must be a changing magnetic flux through the loop. What is causing this magnetic flux?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top