How Does Gas Behavior Differ in Fixed-Volume vs. Piston Containers When Heated?

AI Thread Summary
In a discussion about gas behavior in two containers, one fixed-volume and one with a piston, it was established that when equal heat is added, the fixed-volume container's temperature increases while the piston container does work, potentially leading to a lower temperature. The relationship between volume and temperature does not directly address energy loss; instead, it is explained by the First Law of Thermodynamics, which balances heat absorbed and work done. The internal energy of an ideal gas increases with temperature, but work done during expansion can result in a temperature drop. Therefore, it is possible for a gas to expand and lose temperature while doing work on a piston. Understanding these principles is crucial for analyzing thermodynamic processes.
uestions
Messages
22
Reaction score
0
There is a container of a fixed volume filled with gas. There is a second container with a piston filled with gas. The containers are filled with the same amount of gas, have the same pressure, have the same volume (the piston is placed so the gases of each container occupy the same volume), and are at the same temperature.
I add equal amounts of heat to each container. The fixed-volume container increases in temperature; the piston of the second container is pushed out and the gas also increases in temperature.
Since the gas in the piston-container does work, does that mean its temperature is less than that of the constant-volume container? I would assume so because the added heat is transferred away as work.
Also, how does the relationship between V and T take into account the energy lost, and therefore decrease in temperature, when an expanding gas does work?
 
Chemistry news on Phys.org
uestions said:
There is a container of a fixed volume filled with gas. There is a second container with a piston filled with gas. The containers are filled with the same amount of gas, have the same pressure, have the same volume (the piston is placed so the gases of each container occupy the same volume), and are at the same temperature.
I add equal amounts of heat to each container. The fixed-volume container increases in temperature; the piston of the second container is pushed out and the gas also increases in temperature.
Since the gas in the piston-container does work, does that mean its temperature is less than that of the constant-volume container? I would assume so because the added heat is transferred away as work.
Yes.
Also, how does the relationship between V and T take into account the energy lost, and therefore decrease in temperature, when an expanding gas does work?
The relationship between V and T doesn't focus on the energy lost. The energy lost is accounted for by the First Law of Thermodynamics, which is essentially an energy balance:

ΔU = Q - W

where Q is the amount of heat absorbed from the surroundings, W is the amount of work done on the surroundings, and U is the internal energy of the gas. For an ideal gas, the internal energy is a monotonically increasing function of temperature.

Chet
 
  • Like
Likes 1 person
Can a gas expand and lose temperature (because it did work on a piston while expanding)?
 
uestions said:
Can a gas expand and lose temperature (because it did work on a piston while expanding)?
Yes.
 
  • Like
Likes 1 person
Thread 'How to make Sodium Chlorate by Electrolysis of salt water?'
I have a power supply for electrolysis of salt water brine, variable 3v to 6v up to 30 amps. Cathode is stainless steel, anode is carbon rods. Carbon rod surface area 42" sq. the Stainless steel cathode should be 21" sq. Salt is pure 100% salt dissolved into distilled water. I have been making saturated salt wrong. Today I learn saturated salt is, dissolve pure salt into 150°f water cool to 100°f pour into the 2 gallon brine tank. I find conflicting information about brine tank...
Engineers slash iridium use in electrolyzer catalyst by 80%, boosting path to affordable green hydrogen https://news.rice.edu/news/2025/engineers-slash-iridium-use-electrolyzer-catalyst-80-boosting-path-affordable-green Ruthenium is also fairly expensive (a year ago it was about $490/ troy oz, but has nearly doubled in price over the past year, now about $910/ troy oz). I tracks prices of Pt, Pd, Ru, Ir and Ru. Of the 5 metals, rhodium (Rh) is the most expensive. A year ago, Rh and Ir...
Back
Top