How Does the Formula for Acceleration in a Pulley System Work?

AI Thread Summary
The discussion focuses on understanding the formula for acceleration in a pulley system involving a 230-g glider and a 100-g hanging mass. The key equation derived is a = m2/(m1+m2) x g, which calculates acceleration based on the masses and gravitational force. The user initially struggled with the concept but later clarified that the tension forces and normal forces cancel out, leaving only the weight of the hanging mass to determine acceleration. After re-evaluating the forces, they confirmed the acceleration as 2.97 m/s². The discussion highlights the importance of recognizing how forces interact in a pulley system to derive the correct acceleration formula.
Yshai24
Messages
6
Reaction score
0

Homework Statement


A 230-g air track glider is connected to a string hanging over a frictionless pulley. A 100-g mass hangs from the other end of the string. a) Draw force diagrams for the glider and the hanging mass. b) Find the acceleration of each.


Homework Equations


F=ma
a=m2/(m1+m2) x g

The Attempt at a Solution



So I attempted solve this problem many ways. My textbook was not helping at all so I googled information on pulley systems. I got an example that fit this and I plugged in the numbers and got the answer to b. I don't need help with the free body diagram, just with understanding this.

The equation I found was a= m2/(m1+m2)x g. So I plugged in the values: a=.1kg/(.23kg+.1kg) x g=2.97m/s2

The problem is, I have no clue how that formula works or why it was used. I initially tried to solve the problem by adding the forces and dividing by the total mass, but I was kind of lost.

Any help is greatly appreciated.
 
Physics news on Phys.org
Solved I think

So right after I posted this, I think I solved it:

The two tension forces cancel out and the normal force on the glider and the weight force for the glider cancel out. So the only force remaining is the weight force on the 100g hanging mass right? So then I do:

w=(.1kg)(9.8m/s2)=.98N

a=.98N/.33=2.97m/s2

I tried this earlier but was only using the mass of the glider and not both objects. Though I still don't understand how the other equation in my first post worked?
 
At the glider end of the string: ## m_1 a = T ##. At the mass end of the string: ## m_2 a = m_2 g - T ##. Note ## a ## is the same on both end because the mass and glider move together. Solve for ## a ##.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top