How Is Electric Field Energy Calculated in a Classical Hydrogen Atom Model?

AI Thread Summary
The discussion focuses on calculating electric field energy in a classical hydrogen atom model, which includes a proton and an electron. The Coulomb force is identified as the primary force holding the atom together, but gravitational forces due to the masses of the proton and electron are also acknowledged. To find the total electric field energy, U(E), the energy density of the electric field, u(E), is integrated over the volumes of both particles, using the formula u(E) = (1/2)ε0E^2. Additionally, the potential energy U'(E) is calculated by considering the proton's charge as uniformly distributed, applying the formula U'(E) = (1/4πε0)(q1q2/r). This approach aims to improve the classical model's accuracy in representing atomic interactions.
bertholf07
Messages
24
Reaction score
0
Cant solve this problem please help :confused:

(Given)The Classical model of the hydrogen atom has a single electon in a fixed orbit around the proton with the bohr radius (5.29E-11 m). It is assumed that the Coulomb force between the proton and the electron holds the hydrogen atom together. However, this is not completely true since both the proton and the electron have a mass so that Newton's Law of universal gravitation provides also an attactive force.

(Question 1)An improvement of this classical mechanical model of the atom involves the energy density of the electric field u(E) in a region of space. Fine the total electric field energy U(E) for the electron and proton assuming that each on has a radius of 1.00E-15?

(Question 2)Include the additional contribution to the electrical potential energy U'(E) if we consider the charge within the proton as a uniform charge distribution.
 
Physics news on Phys.org
Eureka, I've got it!
If you take the Biot Savart and rip out the i, and the ds, then shove a v in it somewhere, you get the B field.
 



The classical model of the hydrogen atom assumes that the only force holding the atom together is the Coulomb force between the proton and the electron. However, this is not entirely accurate as both the proton and electron have mass, so the gravitational force must also be taken into account.

To improve this model, we can consider the energy density of the electric field in a given region of space. This can be represented by u(E), and the total electric field energy, U(E), can be found by integrating u(E) over the volume of the electron and proton.

For question 1, we are given that the Bohr radius is 5.29E-11 m, and we need to find the total electric field energy for both the electron and proton assuming they each have a radius of 1.00E-15 m. To do this, we can use the formula for the energy density of an electric field, u(E) = (1/2)ε0E^2, where ε0 is the permittivity of free space and E is the electric field strength.

We can then integrate this over the volume of the electron and proton, taking into account their respective radii. This will give us the total electric field energy, U(E), for the system.

For question 2, we need to consider the additional contribution to the electrical potential energy, U'(E), if we assume that the charge within the proton is uniformly distributed. In this case, we can use the formula for the potential energy of a point charge, U'(E) = (1/4πε0)(q1q2/r), where q1 and q2 are the charges and r is the distance between them.

In this case, q1 would be the charge of the proton, and q2 would be the charge of the electron. We can then integrate this over the volume of the electron and proton to find the additional contribution to the electrical potential energy.

I hope this helps in solving the problem. Good luck!
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top