How is torque divided between multiple wheels in a system with friction?

AI Thread Summary
In a system with four wheels driven by two shafts, the total torque of 40 Nm calculated from the power and angular velocity can be divided among the wheels, resulting in 10 Nm per wheel under ideal conditions. However, in practice, variations in load distribution, such as weight transfer between inner and outer wheels during turns, can lead to unequal torque distribution. The frictional forces acting on the wheels must match the thrust force for the vehicle to maintain a constant speed, which can result in discrepancies between calculated and actual forces due to factors like transmission efficiency. If a differential is present, it ensures a 50/50 torque split between the two sides, while a solid axle may transfer torque differently. The coefficient of friction determines the maximum force available, but the actual friction force will adjust based on the input torque applied to the wheels.
Jared94
Messages
2
Reaction score
0
Hi there, really trying to grasp these concepts for one of my engineering papers. This is basic stuff I realized now that I never really understood.

If I've got two shafts, two wheels per shaft meaning four wheels in total, each wheel is 60 mm in diameter, and the power consumed by the system in providing a constant horizontal velocity of 0.15 m/s is 200W, what is the torque in each wheel?

The wheels are rubber coated, and the wheels are acting upon a steel surface (take coefficient of friction to be 0.7).

This is how I've tried solved the problem:
Power = Torque x angular velocity
w = v / r = 0.15 / 0.030 = 5 rad/s

Torque = P / w = 200 / 5 = 40 Nm

Now here's where I get stuck; the concept of what I've calculated:
Now since there are 4 wheels (instead of just 1 wheel) AND two shafts (two wheels in each shaft), how do I interpret this torque of 40 Nm? Is the force per wheel just force = Power / velocity or is this force divided amongst the 4 wheels?

With the friction, since the system is moving at a constant speed of 0.15 m/s, will the thrust force equal the frictional forces? The force here doesn't equal the force calculated via the torque of 40 Nm, is this because of a transmission efficiency?

So to summarise:
If power consumed in moving all four wheels at a constant speed is 200W, is the torque of 40 Nm I calculated split between the four wheels equally?
Power = force x velocity, calculating the force from here doesn't equal the total frictional forces etc. etc.

Thanks in advance.
 
Engineering news on Phys.org
In theory, if the vehicle goes in straight line, the torque per wheel is the total torque divided by the number of wheels, so 10 N.m per wheel.

In practice, to keep it in a straight line, it is possible that the inner and outer wheels have different values, as long as the moment about the vertical axis the same between the left and right side. Usually this is due to some flexibility introduced in construction. For example, the axle bends under the weight, lifting the outer wheel. This shifts the normal force from the outer to the inner wheel. The normal force of the outer wheel could be not enough to support the 10 N.m input torque, so it's the inner wheel that will take the «left over» torque with its increased normal force. If your inner and outer wheels are relatively far apart, this weight transfer could also happen (Do a free body diagram).

If the moment is different between the left and right side, then the vehicle will turn (unless you introduce some other moment elsewhere, like another axle).

That is for a solid axle. If you have a differential, it will ensure you that the torque is always split 50/50 between the 2 sides, no matter the conditions. That is why if you lift one side off the ground, the vehicle don't move: no reaction torque on the wheel in the air, so you have also zero torque on the other side (The power is solely used to accelerate the lifted wheel). With a solid axle the input torque would completely transfer to the other side (40 N.m). But the torque between the inner and outer wheels can still be different.

The coefficient of friction specifies the maximum force that can be applied, thus it is possible to have a smaller friction force. The actual friction force reacts to the input torque.
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...

Similar threads

Replies
10
Views
4K
Replies
7
Views
7K
Replies
23
Views
4K
Replies
5
Views
5K
Replies
4
Views
3K
Replies
107
Views
39K
Replies
25
Views
2K
Back
Top