How much ice is needed to cool 31055.04J of water from 42°C to 0°C?

  • Thread starter Thread starter cwill53
  • Start date Start date
  • Tags Tags
    Composite Rod
AI Thread Summary
To cool 31055.04J of water from 42°C to 0°C, the calculations involve determining the mass of ice needed to absorb this heat. The initial approach incorrectly included the temperature of the water in the heat transfer equation, as the ice remains at 0°C while melting. The correct method focuses solely on the heat lost to the ice-water bath during the phase change of the ice. After clarification, the revised mass of ice required is calculated to be 0.093 kg, or 93 grams. This adjustment highlights the importance of accurately considering the temperature conditions during the cooling process.
cwill53
Messages
220
Reaction score
40
Homework Statement
Two rods, one made of brass and the other made of copper, are joined end to end. The length of the brass section is 0.300m and the length of the copper section is 0.800 m. Each segment has cross-sectional area ##0.00500m^2##. The free end of the brass segment is in boiling water and the free end of the copper segment is in an ice–water mixture, in both cases under normal atmospheric pressure. The sides of the rods are insulated so there is no heat loss to the surroundings. (a) What is the temperature of the point where the brass and copper segments are joined? (b) What mass of ice is melted in 5.00 min by the heat conducted by the composite rod?
Relevant Equations
$$H=\frac{dQ}{dt}=kA\frac{T_{H}-T_{C}}{L}$$
##k_{brass}=109\frac{W}{m\cdot K}## ##k_{copper}=385\frac{W}{m\cdot K}##
My answer:

a.
$$H=\frac{dQ}{dt}$$
$$H_{brass}=H_{copper}$$
$$(109\frac{W}{m\cdot K})(0.005m^2)\frac{100^{\circ}C-T_{c}}{0.3m}=(385\frac{W}{m\cdot K})(0.005m^2)\frac{T_{H}-0^{\circ}C}{0.8m}$$
$$T_{H,Cu}=T_{C,brass}=T_{2}$$
$$-1.8166667T_{2}+181.666667^{\circ}C=2.40625T_{2}\Rightarrow T_{2}=43.02^{\circ}C$$

b.
$$\frac{dQ}{dt}=103.5168J/s\Rightarrow \delta Q=(103.5168J/s)(5 min)=31055.04J$$
##c_{ice}=2100J/(kg\cdot C^{\circ})## ##L_{f,water}=334\cdot 10^3J/kg##

$$Q_{ice}=m(2100J/(kg\cdot C^{\circ}))(42^{\circ}C)+m(334\cdot 10^3J/kg)$$

$$31055.04J=(424342J/kg)m\Rightarrow m=0.073kg$$Is this correct?
 
Physics news on Phys.org
I agree with your answer to a, but what relevance has 42C to part b?
 
haruspex said:
I agree with your answer to a, but what relevance has 42C to part b?
I just plugged the 42C in for Tc in the right hand side or Th in the left hand side to get dQ/dt...I don’t know if this is correct.
Should I have used 42C in finding the quantity of heat for ice?
 
No. The ice is in an ice-water bath at 0 C, and the only thing happening is that the ice at 0 C is melting to form water at 0 C. It is not heating up to 42 C. The only place where the temperature is 42 C is at the junction between the copper and the brass.
 
  • Like
Likes cwill53
Chestermiller said:
No. The ice is in an ice-water bath at 0 C, and the only thing happening is that the ice at 0 C is melting to form water at 0 C. It is not heating up to 42 C. The only place where the temperature is 42 C is at the junction between the copper and the brass.
Thanks for that. That alone just cleared up a lot of confusion I had. That means I should only be considering the heat produced from the ice changing phase heat lost to the ice-water bath.

From that I got m= 0.093 kg= 93 g.
 
Last edited:
cwill53 said:
Thanks for that. That alone just cleared up a lot of confusion I had. That means I should only be considering the heat produced from the ice changing phase.

From that I got m= 0.093 kg.
I wouldn't call it heat produced. I would call it heat lost to the ice water bath. I haven't checked your math, but your approach is correct. Also, I would express the result as 93 grams.
 
  • Like
Likes cwill53
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top