Inequality involving abs. value of complex-valued multiple integral

benorin
Science Advisor
Insights Author
Messages
1,442
Reaction score
191
How do I show that

0\leq \Re (s) +k\Rightarrow\left| (s)_k \int_0^1\cdots\int_0^1 (n+x_1+\cdots +x_k)^{-s-k}\, dx_1\cdots\, dx_k \right| \leq |(s)_k|n^{-\Re (s) -k}​

where k is a nongegative integer and (s)_k:=s(s+1)\cdots (s+k-1) is the Pochammer symbol (aka the rising factorial) ?

If it helps, I know (and have previously proven) that

(s)_k\int_0^1\cdots\int_0^1 (n+x_1+\cdots +x_k)^{-s-k}\, dx_1\cdots\, dx_k = \sum_{m=0}^{k}(-1)^{m} \left(\begin{array}{c}k\\m\end{array}\right) (n+m)^{-s} =: \Delta ^k (n^{-s})​

where \Delta is the forward difference operator.
 
Last edited:
Physics news on Phys.org
You don't need your previous work, just use the simplest upper bound for your integral you can think of.
 
I got it. Thanks shmoe.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top