Is the Extra Term in the Expectation Value Calculation Zero?

Doitright
Messages
6
Reaction score
0

Homework Statement



Show that, for a general one-dimensional free-particle wave packet

$$\psi (x,t) = (2 \pi h)^{-1/2} \int_{-\infty}^{\infty} exp [i (p_x x - p_x^2 t / 2 m)/h] \phi (p_x) dp_x$$

the expectation value <x> of the position coordinate satisfies the equation

$$<x> = <x>_{t=t_0} + \frac{<p_x>}{m}(t - t_0)$$

Hints:

Use the fact that

$$\frac{\partial}{\partial p_x} exp[i (p_x x - p_x^2 t / 2 m)/h] = \frac{i}{h} (x - p_x t / m) exp[i (p_x x - p_x^2 t / 2 m)/h]$$

to show that

$$<x> = \int_{-\infty}^{\infty} \phi^* (p_x) [ih \frac{\partial}{\partial p_x} +\frac{p_x}{m}t]\phi(p_x)dp_x$$

Homework Equations

The Attempt at a Solution


[/B]
I am struggling to prove what is mentioned in hints, ie:

$$<x> = \int_{-\infty}^{\infty} \phi^* (p_x) [ih \frac{\partial}{\partial p_x} +\frac{p_x}{m}t]\phi(p_x)dp_x$$

$$<x> = \int_{-\infty}^{\infty} \psi^*(x,t)x\psi(x,t)dx$$
$$= (2 \pi h)^{-1} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} exp [-i (p'_x x - p_x^{'2} t / 2 m)/h] \phi (p'_x) dp'_x (ih \frac{\partial}{\partial p_x}) $$
$$\int_{-\infty}^{\infty} exp [i (p_x x - p_x^2 t / 2 m)/h] \phi (p_x) dp_x dx$$

I am able to get

$$<x> = \int_{-\infty}^{\infty} \phi^* (p_x) [ih \frac{\partial}{\partial p_x} +\frac{p_x}{m}t - x]\phi(p_x)dp_x$$

I get one more term $$-\phi^*(p_x) x \phi(p_x)$$ than what is shown in the hints. I am wondering whether this extra term should be zero.
 
Physics news on Phys.org
Hi, I am wondering the extra term I get, which is different from what is asked to prove in the hints, ie,

$$\int_{-\infty}^{\infty} -\phi^*(p_x) x \phi(p_x) dp_x$$

is equal to zero?
 
The steps:
$$<x> = \int_{-\infty}^{\infty} \psi^*(x,t)x\psi(x,t)dx$$
$$= (2 \pi h)^{-1} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} exp [-i (p'_x x - p_x^{'2} t / 2 m)/h] \phi^* (p'_x) dp'_x (ih \frac{\partial}{\partial p_x})$$
$$\int_{-\infty}^{\infty} exp [i (p_x x - p_x^2 t / 2 m)/h] \phi (p_x) dp_x dx$$
$$= (2 \pi h)^{-1} i h \int_{-\infty}^{\infty} dp'_x \int_{-\infty}^{\infty} dp_x \int_{-\infty}^{\infty} dx exp [-i (p'_x x - p_x^{'2} t / 2 m)/h] \phi^* (p'_x)$$
$$<\frac{i}{h} (x - \frac{p_x t}{m}) exp [i (p_x x - p_x^2 t / 2 m)/h] \phi (p_x) + exp [i (p_x x - p_x^2 t / 2 m)/h] \frac{\partial \phi(p_x)}{\partial p_x}>$$
$$= i h \int_{-\infty}^{\infty} dp'_x \int_{-\infty}^{\infty} dp_x \delta(p_x - p'_x) exp [\frac{i p_x^{'2} t}{2 h m}] exp [\frac{-i p_x^{2} t}{2 h m}] \phi^* (p'_x) $$
$$<\frac{i}{h} (x - \frac{p_x t}{m}) + \frac{\partial}{\partial p_x}> \phi(p_x)$$
$$= i h \int_{-\infty}^{\infty} \phi^* (p_x) <\frac{i}{h} (x - \frac{p_x t}{m}) + \frac{\partial}{\partial p_x}> \phi(p_x) dp_x$$
$$= \int_{-\infty}^{\infty} \phi^* (p_x) (- x + \frac{p_x t}{m} + i h \frac{\partial}{\partial p_x}) \phi(p_x) dp_x$$

And I get the extra term,
$$\int_{-\infty}^{\infty} -\phi^*(p_x) x \phi(p_x) dp_x$$
which I am not sure if it's zero.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top