Is the force in a tilted beam affected by the angle of tilt?

AI Thread Summary
The discussion centers on the effect of beam tilt on internal forces, specifically how the angle influences the compression in the beam. It is noted that as the angle decreases, the calculated force in the beam increases significantly, which seems counterintuitive to some participants. The calculations involve resolving the weight into components, particularly using the sine function, which leads to larger values as the angle approaches zero. The importance of considering moment equilibrium and additional loads due to the beam's geometry is also highlighted. Ultimately, the conversation emphasizes the need for a clear understanding of the underlying physics and proper modeling of forces in tilted beams.
megavolt818
Messages
2
Reaction score
0
If I have a beam tilted at an angle with a weight hagning off of one end and it is fixed on the other (see attachment), my teacher says that I need to resolve the force to find the force in the beam. However, it does not make sense to me that the force in the beam increases as the angle decreases. At an angle of 1 degree the beam has a very large internal force that "goes away" once the angle becomes zero. The way I am determining the force in the beam is: since the weight creates a force in the y-direction the force in the beam is the weight divided by the sine of the angle. This just doesn't sense. What am I missing?
 

Attachments

Engineering news on Phys.org
Your post seems a trifle muddled.

You say that you are calculating a force that equals a constant divided by the sine of an angle.
Yet you also express surprise that the calculation grows yields an increasing result as the angle decreases.

Since the sine is always less than 1 and decreases with decreasing angle why is this suprising?

I am not sure how you are modelling your beam.
Have you considered any other load imposed on the beam as a result of the geometry, in particular have you considered moment equilibrium?
 
I understand that there will be a moment applied to this beam due to the weight hanging off the end.

It seems counterintuitive that the compression in the beam increases as the angle decreases. I know what the math shows; it just doesn't seem correct that at a 90 degree angle the compression would be 100 lbs (assume the weight is 100 lbs), but at an agle of 1 degree the compression would be 5729.8 lbs. 100 divided by sine of 1 degree. Am I truly solving for the compression in the member correctly? The compression increases by 57 times the original? In my mind the compression of the beam should decrease as the angle approaches 0.
 
Draw a free body diagram for the tip of the beam, decomposing W and check where is theta.
 
Last edited:
Hi all, I have a question. So from the derivation of the Isentropic process relationship PV^gamma = constant, there is a step dW = PdV, which can only be said for quasi-equilibrium (or reversible) processes. As such I believe PV^gamma = constant (and the family of equations) should not be applicable to just adiabatic processes? Ie, it should be applicable only for adiabatic + reversible = isentropic processes? However, I've seen couple of online notes/books, and...
Thread 'How can I find the cleanout for my building drain?'
I am a long distance truck driver, but I recently completed a plumbing program with Stratford Career Institute. In the chapter of my textbook Repairing DWV Systems, the author says that if there is a clog in the building drain, one can clear out the clog by using a snake augur or maybe some other type of tool into the cleanout for the building drain. The author said that the cleanout for the building drain is usually near the stack. I live in a duplex townhouse. Just out of curiosity, I...
Back
Top