sourlemon
- 52
- 1
1. Solve the equation
[sin(xy) + xycos(xy)]dx + [1 +x^{2}cos(xy)dy = 0
[sin(xy) + xycos(xy)]dx = M(x,y)
[1 +x^{2}cos(xy)dy = N(x,y)
dM/dy
sin(xy) = xcos(xy)
xycos(xy) = uv' + vu' = (xy)(-xsin(xy)) + (x)(cos(xy))
u = xy du = x v = cos(xy) dv=-xsin(xy)
dM/dy= xcos(xy) + (xy)(-xsin(xy)) + (x)(cos(xy)) = 2xcos(xy) - x^{2}ysin(xy)
dN/dy
u = x^{2} du = 2x v= cos(xy) dv = -ysin(xy)
x^{2}(-xsin(xy))+ (2x)cos(xy) = (2x)cos(xy) - x^{2}y(sin(xy))
Since dM/dy = dN/dx, the equation is exact.
F(x,y) = \int[1 + x^{2}cos(xy)dy + h(x)
dy = y
x^{2}cos(xy)dy = x^{2}xsin(xy) = x^{3}sin(xy)
F(x,y) = y + x^{3}sin(xy) + h(x)
dF/dx(x,y) = N(x,y) = 3x^{2}cos(xy) + h'(x)
N(x,y) = M (x,y)
3x^{2}cos(xy) + h'(x) = sin(xy) + xycos(xy)
h'(x) = sin(xy) + xycos(xy) - 3x^{2}cos(xy)
h(x) = \int[sin(xy) + xycos(xy) - 3x^{2}cos(xy)]
sin(xy) = -ycos(xy)
xycos(xy) = uv - \intvdv = xy^{2}sin(xy) - \intysin(u)(du) = xy^{2}sin(xy) + ycos(xy)
u = xy du = y dv = cos(xy) v=ysin(xy)
3x^{2}cos(xy) = 3x^{2}ysin(xy) - \intysin(xy)(6x)
u = 3x^{2} du = 6x dv=cos(xy) v = ysin(xy)
I got until there. How do I integrate \intysin(xy)(6x)? Or did I missed something?
[sin(xy) + xycos(xy)]dx + [1 +x^{2}cos(xy)dy = 0
Homework Equations
The Attempt at a Solution
[sin(xy) + xycos(xy)]dx = M(x,y)
[1 +x^{2}cos(xy)dy = N(x,y)
dM/dy
sin(xy) = xcos(xy)
xycos(xy) = uv' + vu' = (xy)(-xsin(xy)) + (x)(cos(xy))
u = xy du = x v = cos(xy) dv=-xsin(xy)
dM/dy= xcos(xy) + (xy)(-xsin(xy)) + (x)(cos(xy)) = 2xcos(xy) - x^{2}ysin(xy)
dN/dy
u = x^{2} du = 2x v= cos(xy) dv = -ysin(xy)
x^{2}(-xsin(xy))+ (2x)cos(xy) = (2x)cos(xy) - x^{2}y(sin(xy))
Since dM/dy = dN/dx, the equation is exact.
F(x,y) = \int[1 + x^{2}cos(xy)dy + h(x)
dy = y
x^{2}cos(xy)dy = x^{2}xsin(xy) = x^{3}sin(xy)
F(x,y) = y + x^{3}sin(xy) + h(x)
dF/dx(x,y) = N(x,y) = 3x^{2}cos(xy) + h'(x)
N(x,y) = M (x,y)
3x^{2}cos(xy) + h'(x) = sin(xy) + xycos(xy)
h'(x) = sin(xy) + xycos(xy) - 3x^{2}cos(xy)
h(x) = \int[sin(xy) + xycos(xy) - 3x^{2}cos(xy)]
sin(xy) = -ycos(xy)
xycos(xy) = uv - \intvdv = xy^{2}sin(xy) - \intysin(u)(du) = xy^{2}sin(xy) + ycos(xy)
u = xy du = y dv = cos(xy) v=ysin(xy)
3x^{2}cos(xy) = 3x^{2}ysin(xy) - \intysin(xy)(6x)
u = 3x^{2} du = 6x dv=cos(xy) v = ysin(xy)
I got until there. How do I integrate \intysin(xy)(6x)? Or did I missed something?