Jaan Kalda kinematics -- Radius of Curvature of a Cycloid

In summary, "Jaan Kalda kinematics -- Radius of Curvature of a Cycloid" explores the geometric properties of cycloids, specifically focusing on calculating the radius of curvature at various points along the curve. The study highlights the mathematical relationships and derivations involved in determining the curvature, emphasizing its applications in physics and engineering. It provides detailed equations and graphical representations to illustrate the behavior of the cycloid as it relates to motion and forces.
  • #1
imbumb
9
0
Cycloid is a curve which can be defined as a trajectory of a point marked on the rim of a rolling wheel or radius R. Determine the curvature radius of such curve at its highest point.

what you need to do is to equate 4v²/r with v²/R and to get that r=4R but i dont understand why the answer shpuldnt just be 2r
 
Physics news on Phys.org
  • #2
imbumb said:
Cycloid is a curve which can be defined as a trajectory of a point marked on the rim of a rolling wheel or radius R. Determine the curvature radius of such curve at its highest point.

what you need to do is to equate 4v²/r with v²/R and to get that r=4R but i dont understand why the answer shpuldnt just be 2r
2r is the distance between the highest point and the ground. What they are looking for is the radius of the arc that is made when the point on the wheel is at its highest point. If you look at a picture of it, you will see that the curve made by the point is much flatter than the curve of the wheel.

-Dan
 
  • #3
topsquark said:
2r is the distance between the highest point and the ground. What they are looking for is the radius of the arc that is made when the point on the wheel is at its highest point. If you look at a picture of it, you will see that the curve made by the point is much flatter than the curve of the wheel.

-Dan
why would the curve of the point be flatter than the curve of the wheel?
edit: i think i get it now
 
Last edited:
  • #4
imbumb said:
why would the curve of the point be flatter than the curve of the wheel?
edit: i think i get it now
Because the center of curvature is not a fixed location. It moves as the wheel rotates.
 
  • Like
Likes imbumb
  • #5
imbumb said:
Cycloid is a curve which can be defined as a trajectory of a point marked on the rim of a rolling wheel or radius R. Determine the curvature radius of such curve at its highest point.

what you need to do is to equate 4v²/r with v²/R and to get that r=4R but i dont understand why the answer shpuldnt just be 2r
2r is the distance to the instantaneous center of rotation, which equals the curvature radius, if that center of rotation is a static point, but not necessarily if it translates.
 
  • #6
Hm, just do the calculation. Start by parametrizing the cycloid and then analyze it with the usual (plane) Fresnet analysis.
 
  • #7
vanhees71 said:
Hm, just do the calculation. Start by parametrizing the cycloid and then analyze it with the usual (plane) Fresnet analysis.
The OP already states a simpler way to calculate it, based on acceleration being the same in the ground frame and the wheel center frame. The question was why the result doesn't match the value intuitively expected by the OP.
 
Back
Top