Kinetic and potential energies of a harmonic oscillator

AI Thread Summary
In a harmonic oscillator, the average potential and kinetic energies in the quantum case are both E/2, which aligns with classical values. The discussion emphasizes that the quantum oscillator's energies depend on average values, similar to classical mechanics where energy is conserved. Participants confirm that calculating the average values for kinetic and potential energies in both cases shows they are equivalent. The problem essentially asks for a comparison of these expectation values, which have been found to be the same. This highlights the consistency between quantum and classical harmonic oscillators in terms of energy distribution.
Von Neumann
Messages
101
Reaction score
4
Problem:

In a harmonic oscillator

\left\langle V \right\rangle=\left\langle K \right\rangle=\frac{E_{0}}{2}

How does this result compare with the classical values of K and V?

Solution:

For a classical harmonic oscillator

V=1/2kx^2
K=1/2mv^2

I don't really know where to begin. Is it safe to say that quantum oscillator must depend on the average values of the kinetic and potential energies? Also, the values of the energies in the classical system are conserved in such a way to conserve total mechanical energy.
 
Last edited:
Physics news on Phys.org
Is the problem statement telling you that the expectation values for the kinetic and potential energies are each E/2 in the quantum case?

If so then perhaps it wants you to calculate the average values in the classical case and show that they're the same.
 
Pagan Harpoon said:
Is the problem statement telling you that the expectation values for the kinetic and potential energies are each E/2 in the quantum case?

If so then perhaps it wants you to calculate the average values in the classical case and show that they're the same.

Oh yes, I've already done that. I calculated <U> and <K> separately.
 
Then haven't you already solved the problem? If you have the expectation values for the kinetic and potential energies in both the classical and quantum cases, then you can compare them and see that they are the same.

Is the question asking you for something more?
 
The question is simply asking to compare the expectation values <V> and <K> of the quantum harmonic oscillator (given above) with the classical values of V and K.
 
Last edited:
If I were faced with that question, I would calculate the average values for V and K in the classical case (which you have done) and then comment that they are the same as the expectation values in the quantum case - that's how they compare, they're the same.

What more do you want to do?
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
I was thinking using 2 purple mattress samples, and taping them together, I do want other ideas though, the main guidelines are; Must have a volume LESS than 1600 cubic centimeters, and CAN'T exceed 25 cm in ANY direction. Must be LESS than 1 kg. NO parachutes. NO glue or Tape can touch the egg. MUST be able to take egg out in less than 1 minute. Grade A large eggs will be used.
Back
Top