Law of Refraction with changing index of refraction

Click For Summary
A light ray entering Earth's atmosphere travels a vertical distance of 101.2 km, with the index of refraction increasing from 1.00 to 1.000293. The relationship between the speed of light and the index of refraction is established using the equation v1/v2 = n2/n1. The discussion involves deriving an expression for the speed of light as a function of altitude, leading to a differential equation. The user successfully finds the solution to the problem after exploring the necessary calculations. The final answer confirms the time interval for the light's traversal through the atmosphere.
Mnemonic
Messages
21
Reaction score
0

Homework Statement


A light ray enters the atmosphere of the Earth and descends vertically to the surface a distance h = 101.2-km below. The index of refraction where the light enters the atmosphere is n = 1.00 and it increases linearly with distance to a value of n= 1.000293 at the Earth's surface.Over what time interval does the light traverse this path?

Homework Equations


v1/v2=n2/n1

v1=3e8
n1=1
v2=3e8/n2
D=distance from atmosphere barrier

The Attempt at a Solution


So the increase in n2 per m = 1/345392491

Therefore n2=(D/345392491) +1

v2=3e8/(1+(D/345392491))

So v2 changes with distance. I'm not sure where to go from here to get time.
 
Physics news on Phys.org
See if you can write an expression for v as a function of altitude. That is, if y is the vertical height then v(y) = ?. It will rely on also having an expression for n(y). Then knowing that v is dy/dt you should be able to write a differential equation.
 
  • Like
Likes Mnemonic
gneill said:
See if you can write an expression for v as a function of altitude. That is, if y is the vertical height then v(y) = ?. It will rely on also having an expression for n(y). Then knowing that v is dy/dt you should be able to write a differential equation.
Thanks I got the answer!
 
Beams of electrons and protons move parallel to each other in the same direction. They ______. a. attract each other. b. repel each other. c. neither attract nor repel. d. the force of attraction or repulsion depends upon the speed of the beams. This is a previous-year-question of CBSE Board 2023. The answer key marks (b) as the right option. I want to know why we are ignoring Coulomb's force?
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
I treat this question as two cases of Doppler effect. (1) When the sound wave travels from bat to moth Speed of sound = 222 x 1.5 = 333 m/s Frequency received by moth: $$f_1=\frac{333+v}{333}\times 222$$ (2) When the sound wave is reflected from moth back to bat Frequency received by bat (moth as source and bat as observer): $$f_2=\frac{333}{333-v}\times f_1$$ $$230.3=\frac{333}{333-v}\times \frac{333+v}{333}\times 222$$ Solving this equation, I get ##v=6.1## m/s but the answer key is...