Linear Algebra: dimension of subspace question

jack_bauer
Messages
10
Reaction score
0

Homework Statement



Find an example of subspaces W1 and W2 in R^3 with dimensions m and n, where m>n>0, such that dim(intersection of W1 and W2)= n




Homework Equations



dim(W1+W2)= dim(W1) + dim(W2)-dim(intersection of W1 and W2)



The Attempt at a Solution



Well what I know for sure is that I have to use the equation dim(W1+W2)= dim(W1) + dim(W2)-dim(intersection of W1 and W2). I'm just really confused on how the subspaces should be. Should they maybe be matrices?
 
Physics news on Phys.org
Subspaces are spans of sets of vectors. If you are working in R^3 then your only choice to make m>n>0 is m=2 and n=1, right? Pick the standard basis, e1=(1,0,0), e2=(0,1,0), e3=(0,0,1). One subspace with dimension 2 is span(e1,e2). A subspace with dimension 1 is span(e1). Do you have any idea what I'm talking about?? Do you know what a span is? Your question about whether the answer is a matrix makes me think we should start from the basics.
 
lol, yeah I know what you are talking about. I'm just really lost with this stuff right now. thanks man.
 
The way to get unlost is to try to solve it. Give me two subspaces, tell me their dimensions, tell me the dimension of their intersection, tell me the dimension of their sum, etc. Show me the formula works. ANY two. They don't even have to solve the problem. You don't even have to be right. Just DO something.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top